1 |
Data Compression for HelioseismologyLöptien, Björn 29 July 2015 (has links)
Die effiziente Kompression von Daten wird eine wichtige Rolle für mehrere bevorste-
hende und geplante Weltraummissionen spielen, die Helioseismologie betreiben werden,
wie beispielsweise Solar Orbiter. Solar Orbiter ist die nächste Mission, die Helioseismologie beinhaltet, und soll im Oktober 2018 gestartet werden. Das Hauptmerkmal von
Solar Orbiter ist der Orbit. Die Umlaufbahn des Satelliten wird zur Ekliptik geneigt
sein, sodass der Satellit einen solaren Breitengrad von bis zu 33 Grad erreichen wird. Dies
wird erstmals ermöglichen, die Pole der Sonne mit Hilfe von lokaler Helioseismologie
zu studieren. Zusätzlich dazu können kombinierte Beobachtungen von Solar Orbiter
und einem anderen Instrument dazu benutzt werden, die tiefen Schichten der Sonne
mittels stereoskopischer Helioseismologie zu erforschen. Die Aufnahmen der Dopplergeschwindigkeit und der Kontinuumsintensität, die für Helioseismologie benötigt werden, werden vom Polarimetric and Helioseismic Imager (PHI) geliefert werden.
Große Hindernisse für Helioseismologie mit Solar Orbiter sind die niedrige Datenüber-
tragungsrate und die (wahrscheinlich) kurzen Beobachtungszeiten. Außerdem erfordert
die Untersuchung der Pole der Sonne Beobachtungen in der Nähe des Sonnenrandes,
sogar von dem geneigten Orbit von Solar Orbiter aus. Dies kann zu systematischen
Fehlern führen.
In dieser Doktorarbeit gebe ich eine erste Einschätzung ab, wie stark Helioseismologie
von verlustbehafteter Datenkompression beeinflusst wird. Mein Schwerpunkt liegt dabei
auf der Solar Orbiter Mission, die von mir erzielten Ergebnisse sind aber auch auf andere
geplante Missionen übertragbar.
Zunächst habe ich mit Hilfe synthetischer Daten die Eignung des PHI Instruments für
Helioseismologie getestet. Diese basieren auf Simulationen der Konvektion nahe der Sonnenoberfläche und einem Modell von PHI. Ich habe eine sechs Stunden lange Zeitreihe
synthetischer Daten erstellt, die die gleichen Eigenschaften wie die von PHI erwarteten
Daten haben. Hierbei habe ich mich auf den Einfluss der Punktspreizfunktion, der Vibrationen des Satelliten und des Photonenrauschen konzentriert. Die von diesen Daten
abgeleitete spektrale Leistungsdichte der solaren Oszillationen legt nahe, dass PHI für
Helioseismologie geeignet sein wird.
Aufgrund der niedrigen Datenübertragungsrate von Solar Orbiter müssen die von
PHI für die Helioseismologie gewonnenen Daten stark komprimiert werden. Ich habe
den Einfluss von Kompression mit Hilfe von Daten getestet, die vom Helioseismic and
Magnetic Imager (HMI) stammen. HMI ist ein Instrument an Bord des Solar Dynam-
ics Observatory Satelliten (SDO), der 2010 gestartet worden ist. HMI erstellt mit hoher
zeitlicher Abfolge Karten der Kontinuumsintensität, der Dopplergeschwindigkeit und des
kompletten Magnetfeldvektors für die komplette von der Erde aus sichtbare Hemispäre
der Sonne. Mit Hilfe mit von HMI aufgenommenen Karten der Dopplergeschwindigkeit
konnte ich zeigen, dass das Signal-zu-Rausch Verhältnis von Supergranulation in der
Zeit-Entfernungs Helioseismologie nicht stark von Datenkompression beeinflusst wird.
Außerdem habe ich nachgewiesen, dass die Genauigkeit und Präzision von Messungen
der Sonnenrotation mittels Local Correlation Tracking von Granulation durch verlust-
behaftete Datenkompression nicht wesentlich verschlechtert werden. Diese Ergebnisse
deuten an, dass die niedrige Datenübertragungsrate von Solar Orbiter nicht unbedingt ein
großes Hinderniss für Helioseismologie sein muss.
|
2 |
Measuring vortical flows in the solar interiorLangfellner, Jan 27 July 2015 (has links)
Diese Dissertation befasst sich mit Beobachtungen von konvektiven Strömungen in der Sonne, und insbesondere mit den Auswirkungen der Rotation auf diese Strömungen auf der Längenskala von Supergranulation und größeren Skalen (>30 Mm). Die Rotation der Sonne verursacht durch die Corioliskraft Wirbelströmungen und bewirkt anisotrope Korrelationen der Geschwindigkeitskomponenten. Man nimmt an, dass diese Korrelationen die Dynamik der Sonne auf großen Längenskalen beeinflussen.
Um horizontale Strömungen zu messen, untersuchen wir photosphärische Aufnahmen der Doppler-Geschwindigkeit und der Kontinuumsintensität des ``Helioseismic and Magnetic Imagers'' (HMI) an Bord der Raumsonde ``Solar Dynamics Observatory'' (SDO) mit Hilfe der Methoden Time-Distance-Helioseismologie (TD) und Local Correlation Tracking (LCT) von Granulen. Im Rahmen der Time-Distance-Helioseismologie kann die lokale vertikale Vortizität gemessen werden, indem die Differenz von Wellenlaufzeiten entlang eines geschlossenen Weges ermittelt wird (Laufzeiten gegen den Uhrzeigersinn minus Laufzeiten im Uhrzeigersinn). Die Ergebnisse von TD und LCT stimmen bis zu den höchsten studierten Breitengraden (+/-60°) hervorragend überein, nachdem eine Korrektur für so genannte Center-to-Limb-Effekte angewandt wurde.
Nach dem Mitteln in Ost-West-Richtung messen wir abseits des Äquators eine schwache, aber signifikante Korrelation zwischen der horizontalen Komponente der Divergenz und der vertikalen Komponente der Vortizität von supergranularen Strömungen. Ein Vergleich der Messungen mit einem Modell für das Rauschen offenbart, dass die TD-Methode verwendet werden kann, um die vertikale Vortizität von Strömungen auf Längenskalen größer als 15 Mm zu messen. Damit können mit dieser Methode nicht nur Strömungen in Supergranulen, sondern auch in Riesenzellen gemessen werden. Wir stellen außerdem fest, dass das Signal in Messungen der vertikalen Vortizität mit Hilfe von Aufnahmen von SDO/HMI sehr viel leichter detektiert werden kann als mit Hilfe von früheren Aufnahmen.
Um den Einfluss der Sonnenrotation auf die Supergranulation im Detail zu studieren, kartieren wir die vertikale Vortizität der Strömungen in der durchschnittlichen Supergranule. Die durchschnittliche Supergranule wird konstruiert, indem Tausende von einzelnen Supergranulen in einem bestimmten Breitengradbereich durch räumliche Verschiebungen zur Deckung gebracht werden. Damit lösen wir zum ersten Mal die vertikale Vortizität in Aus- und Einströmungen räumlich auf. In nördlichen Breiten sind Ausströmungen im Mittel mit einer Zirkulation im Uhrzeigersinn verbunden. Das Signal verschwindet am Äquator und hat in südlichen Breiten das umgekehrte Vorzeichen. Aus- und Einströmungen besitzen eine vertikale Vortizität mit entgegengesetzten Vorzeichen, wie es von Vorhersagen erwartet wird, die sich auf die Corioliskraft stützen. Es wird offenbar, dass der Vortizitätspeak in der durchschnittlichen supergranularen Ausströmung vergleichsweise ausgedehnt und schwach ist (Halbwertsbreite von 13 Mm und Spitzenwert von 4 x 10^{-6}/s im Uhrzeigersinn bei 40° nördlicher Breite), verglichen mit der durchschnittlichen Einströmung (Halbwertsbreite von 8 Mm und Spitzenwert von 8 x 10^{-6}/s gegen den Uhrzeigersinn).
Darüberhinaus untersuchen wir mit SDO/HMI-Daten das Magnetfeld in den Einströmungen um die durchschnittliche Supergranule am Äquator herum. Die mittlere Stärke des Magnetfelds stellt sich als richtungsabhängig heraus: In westlicher Richtung (prograd) ist das Netzwerkfeld ungefähr 10% stärker als in östlicher Richtung. Dieses überraschende Ergebnis fügt dem Rätsel um die Supergranulation einen weiteren Aspekt hinzu. Ob ein Zusammenhang mit anderen bekannten Eigenschaften der Supergranulation besteht (beispielsweise zur Superrotation des supergranularen Strömungsmusters oder zu wellenartigen Eigenschaften), ist nicht geklärt.
|
Page generated in 0.5226 seconds