• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Distribution of Values of Logarithmic Derivatives of Real L-functions

Mourtada, Mariam Mohamad 09 August 2013 (has links)
We prove in this thesis three main results, involving the distribution of values of $L'/L(\sigma,\chi_D)$,$D$ being a fundamental discriminant, and $\chi_D$ the real character attached to it. We prove two Omega theorems for $L'/L(1,\chi_D)$, compute the moments of $L'/L(1,\chi_D)$, and construct under GRH, for each $\sigma>1/2$,a density function ${\cal Q}_\sigma$ such that \[\#\{D ~~\text{fundamental discriminants, such that}~~ |D|\leq Y,~~ \text{and}~~ \alpha \leq L'/L(\sigma,\chi_D)\leq \beta \} \]\[ \sim \frac{6}{\pi^2\sqrt{2\pi}} Y \int_\alpha^\beta {\cal Q}_\sigma(x)dx . \]
2

The Distribution of Values of Logarithmic Derivatives of Real L-functions

Mourtada, Mariam Mohamad 09 August 2013 (has links)
We prove in this thesis three main results, involving the distribution of values of $L'/L(\sigma,\chi_D)$,$D$ being a fundamental discriminant, and $\chi_D$ the real character attached to it. We prove two Omega theorems for $L'/L(1,\chi_D)$, compute the moments of $L'/L(1,\chi_D)$, and construct under GRH, for each $\sigma>1/2$,a density function ${\cal Q}_\sigma$ such that \[\#\{D ~~\text{fundamental discriminants, such that}~~ |D|\leq Y,~~ \text{and}~~ \alpha \leq L'/L(\sigma,\chi_D)\leq \beta \} \]\[ \sim \frac{6}{\pi^2\sqrt{2\pi}} Y \int_\alpha^\beta {\cal Q}_\sigma(x)dx . \]

Page generated in 0.1148 seconds