• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sélection de variables pour des processus ponctuels spatiaux / Feature selection for spatial point processes

Choiruddin, Achmad 15 September 2017 (has links)
Les applications récentes telles que les bases de données forestières impliquent des observations de données spatiales associées à l'observation de nombreuses covariables spatiales. Nous considérons dans cette thèse le problème de l'estimation d'une forme paramétrique de la fonction d'intensité dans un tel contexte. Cette thèse développe les procédures de sélection des variables et donne des garanties quant à leur validité. En particulier, nous proposons deux approches différentes pour la sélection de variables : les méthodes de type lasso et les procédures de type Sélecteur de Dantzig. Pour les méthodes envisageant les techniques de type lasso, nous dérivons les propriétés asymptotiques des estimations obtenues par les fontions d'estimation dérivées par les vraisemblances de la Poisson et de la régression logistique pénalisées par une grande classe de pénalités. Nous prouvons que les estimations obtenues par de ces procédures satisfont la consistance, sparsité et la normalité asymptotique. Pour la partie sélecteur de Dantzig, nous développons une version modifiée du sélecteur de Dantzig, que nous appelons le sélecteur Dantzig linéaire adaptatif (ALDS), pour obtenir les estimations d'intensité. Plus précisément, les estimations ALDS sont définies comme la solution à un problème d'optimisation qui minimise la somme des coefficients des estimations soumises à une approximation linéaire du vecteur score comme une contrainte. Nous constatons que les estimations obtenues par de ces méthodes ont des propriétés asymptotiques semblables à celles proposées précédemment à l'aide de méthode régularisation du lasso adaptatif. Nous étudions les aspects computationnels des méthodes développées en utilisant les procédures de type lasso et de type Sélector Dantzig. Nous établissons des liens entre l'estimation de l'intensité des processus ponctuels spatiaux et les modèles linéaires généralisés (GLM), donc nous n'avons qu'à traiter les procédures de la sélection des variables pour les GLM. Ainsi, des procédures de calcul plus faciles sont implémentées et un algorithme informatique rapide est proposé. Des études de simulation sont menées pour évaluer les performances des échantillons finis des estimations de chacune des deux approches proposées. Enfin, nos méthodes sont appliquées pour modéliser les emplacements spatiaux, une espèce d'arbre dans la forêt observée avec un grand nombre de facteurs environnementaux. / Recent applications such as forestry datasets involve the observations of spatial point pattern data combined with the observation of many spatial covariates. We consider in this thesis the problem of estimating a parametric form of the intensity function in such a context. This thesis develops feature selection procedures and gives some guarantees on their validity. In particular, we propose two different feature selection approaches: the lasso-type methods and the Dantzig selector-type procedures. For the methods considering lasso-type techniques, we derive asymptotic properties of the estimates obtained from estimating functions derived from Poisson and logistic regression likelihoods penalized by a large class of penalties. We prove that the estimates obtained from such procedures satisfy consistency, sparsity, and asymptotic normality. For the Dantzig selector part, we develop a modified version of the Dantzig selector, which we call the adaptive linearized Dantzig selector (ALDS), to obtain the intensity estimates. More precisely, the ALDS estimates are defined as the solution to an optimization problem which minimizes the sum of coefficients of the estimates subject to linear approximation of the score vector as a constraint. We find that the estimates obtained from such methods have asymptotic properties similar to the ones proposed previously using an adaptive lasso regularization term. We investigate the computational aspects of the methods developped using either lasso-type procedures or the Dantzig selector-type approaches. We make links between spatial point processes intensity estimation and generalized linear models (GLMs), so we only have to deal with feature selection procedures for GLMs. Thus, easier computational procedures are implemented and computationally fast algorithm are proposed. Simulation experiments are conducted to highlight the finite sample performances of the estimates from each of two proposed approaches. Finally, our methods are applied to model the spatial locations a species of tree in the forest observed with a large number of environmental factors.

Page generated in 0.1158 seconds