Spelling suggestions: "subject:"blutversorgung"" "subject:"akutversorgung""
1 |
Evaluation of Efficiency-Enhancing Measures Using Optimization Algorithms for Fuel Cell VehiclesUhrig, Florian, Säger, Peter, Kurzweil, Peter, von Unwerth, Thomas 25 November 2019 (has links)
Efficiency-enhancing measures are evaluated for a serial hybrid fuel cell vehicle over a drive cycle. The regarded powertrain consists of fuel cell system, battery, DC-DC converter, inverter and electrical machine. Within the fuel cell system, the air supply is the largest parasitic load. For the lowest dissipation, different air compression architectures are optimized by a scaling algorithm and compared. Phase switching reduces DC-DC losses. Additionally, a variable DC-link voltage increases efficiency of electrical machine and inverter. Dynamic Programming (DP) is used to evaluate these measures. The DP was extended by start-up and shutdown energy of the fuel cell system to model realistic cycle consumptions. Finally, all these efficiency enhancing measures lead to a reduction of energy consumption by 6.4 % for the serial hybrid fuel cell vehicle over a drive cycle.
|
2 |
Development of an oil free turbo compressor for mobile fuel cell applications – challenges and resultsFröhlich, Patrik 25 November 2019 (has links)
The compressor for air supply to the fuel cell stack is a critical component of the balance of plant, especially for mobile applications. The main requirements of the compressor are the performance regarding pressure ratio, mass flow and efficiency at minimal size and weight. The turbo compressor technology is ideally suited to cope with these requirements. The lifetime requirement and the necessity of oil and particle free air supply advised to employ air bearings. The fuel cell air supply requirements are in conflict with the turbo compressor pressure ratio and mass flow characteristics. Possible solutions and their impact onto compressor design and fuel cell operation are described in this paper. The chosen system design approach considering all design aspects and its interactions during the design phase is beneficial in order to achieve the most lightweight and efficient air supply system for fuel cells. Experimental validation of an air bearing turbo compressor for a 100 kW fuel cell stack on an aerodynamic test rig verifies the predicted performance.
|
3 |
Vibration resistance of air bearing turbo compressorsLoosli, Christian, Dietmann, Fabian, Fröhlich, Patrik, Zwyssig, Christof 27 May 2022 (has links)
Air bearing radial turbo (also called centrifugal) compressors prevail in most mobile fuel cell air supply applications due to the small size and weight, the high efficiency and the oil- and maintenance free operation. An important aspect in mobile fuel cell applications is the vibration resistance of all system components, including the compressor, with vibration requirements up to 20 g in automotive applications.
This paper gives the background of the air bearing vibration characteristics, depicting the dependencies of vibration resistance on inlet conditions and operating points. The critical operating conditions concerning vibration resistance are identified, and it is outlined how vibration requirements can be included in the design process of an air bearing turbo compressor. A visualization of vibration resistance in the commonly used compressor map is presented, allowing the fuel cell system integrator to take qualified decisions for the mechanical integration of the compressor concerning vibrations.
|
Page generated in 0.0626 seconds