• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tectonic and sedimentary response to oblique and incipient continental-continental collision the easternmost Mediterranean (Cyprus)

Kinnaird, Timothy C. January 2008 (has links)
The main objective of this work was to understand fundamental processes related to incipient continental collision through studying the tectonostratigraphic evolution of Cyprus, in its Easternmost Mediterranean context. This was achieved by compiling structural, sedimentological and stratigraphic evidence from Late Cenozoic to Recent sequences, and by applying palaeomagnetic and luminescence methods of dating. In particular, the basin-fill of the Neogene basins provides a temporal and palaeogeographic control to interpret syn-depositional and post-depositional structural assemblages. Four neotectonic deformation phases are recognised. The Polis and Pissouri Basins originated as Tortonian depocentres in response to syn-depositional W-E/WSW-ENE D1 extension. The Maroni Basin originated as a Tortonian depocentre in response to syn-depositional NW-SE D1 extension. The difference in extension direction between west and south-central Cyprus is attributed to the curvature of the Cyprus Arc. The Middle - Late Pliocene D2 extensional/transtensional phase re-orientated the Neogene basins and resulted in syn-depositional NW-SE extension. A kinematic change occurred at ~3 Ma, attributed to the collision of the Eratosthenes Seamount with an active trench, the ‘Cyprus Arc’. Early Pleistocene to Recent D3a transpression generated strike-slip faulting along E-W trends, conjugate left-lateral NNE-SSW-trending and right-lateral NNW-SSE-trending strike-slip faults and reactivated Tortonian D1 NW-SE and NE-SW structures. Middle Pleistocene to Recent D3b compression produced intense NE-SW contractional deformation orientated along NW-SE trends. Optically stimulated luminescence (OSL) dating was used as a tool to constrain the D3a/D3b events, by generating a chronology for their associated sediments. D3 transtensional lineaments originated in the early Pleistocene (174.1 ± 20.9 ka < D3a < 76.6 ± 16.43 ka), and are still active today (Cape Kiti: 38.1 ± 13.2 ka < D3a < 12.1 ± 0.1 ka). D3 compressional lineaments originated in the middle Pleistocene, and were still actively growing at 76.8 ± 31.6 ka. To constrain the timing of regional uplift in south and central Cyprus, a magnetostratigraphy was generated for the Plio-Pleistocene units of the Pissouri and Mesaoria Basins. The results indicate that rapid uplift began in the latest Pliocene (c. 2.14 – 1.95 Ma), coincident with the large-scale progradation of Gilbert-type fan deltas into the Pissouri Basin, and the incursion of large fluvial networks into the Mesaoria Basin. In light of the new evidence, three alternative models for the Early Cenozoic to Recent tectonostratigraphic evolution of Cyprus are considered: model 1, subduction/incipient collision; model 2, advanced collision; and model 3, transpression. Some difficulties exist in detail, with all three models. However, at present the working hypothesis is as follows: areas to the east of Cyprus (Syria, S Turkey) were in a collisional setting from Mid-Miocene time onwards. Cyprus remained in an oceanic embayment (Levant Sea) further west and subduction continued during Miocene time. Compressional processes may have been active at depth during this time. Southward extension (trench roll-back) was taking place at a high structural level in S Cyprus, as with many other convergent margin settings (e.g. SW Peloponnese; Aleutians; Sunda arc). Subsequently, the collision of the Eratosthenes Seamount with the Cyprus Arc obstructed subduction and initiated rapid uplift of the Troodos Massif. The initial manifestation of this kinematic change was the generation of E-W-trending strike-slip faults and the development of conjugate left-lateral NNE-SSW-trending and right-lateral NNW-SSE-trending strike-slip faults. Transpression resulted in the reactivation of D1/D2 E-W, NE-SW and NW-SE structures. Subsequent deformation is documented in a compressional lineament in SW Cyprus. In addition, the over-riding plate in southwest Cyprus still appears to be undergoing gravity spreading outwards from the developing collision zone.
2

Analytical Potential Of Polymerized Liposomes Bound To Lanthanide Ions For Qualitative And Quantitative Analysis Of Proteins

Santos, Marina 01 January 2007 (has links)
One of the intriguing features of biological systems is the prevalence of highly selective and often very strong interactions among different cellular components. Such interactions play a variety of organizational, mechanical, and physiological roles at the cellular and organism levels. Antigen-antibody complexes are representative examples of highly selective and potent interactions involving proteins. The marked specificity of protein-antibody complexes have led to a wide range of applications in cellular and molecular biology related research. They have become an integral research tool in the present genomic and proteomic era. Unfortunately, the production of selective tools based on antigen-antibody interactions requires cumbersome protocols. The long term goal of this project explores the possibility of manipulating liposomes to serve as the chemical receptors ("artificial antibodies") against selected proteins. Cellular lipids (e.g., lipid rafts) are known to facilitate highly selective binding of proteins on cell membranes. The binding of proteins to cell membranes can be envisaged to be modulated via interactions between polar (charged) and non-polar head groups of lipids and the complementary amino acid residues of proteins. Their interaction is facilitated by a combination of van der Waals, electrostatic, hydrogen bonding and hydrophobic forces. A further interesting aspect of the above interaction is the "fluidity" of the membrane resident lipids, which can migrate from other regions to further enhance the complementary interactions of proteins on the initially "docked" membrane surface. With these features in mind, the end goal of this project is expected to deliver lipid-based chemical receptors "synthetically" designed against proteins to function as "artificial antibodies". Protein sensing will be accomplished with lipid receptors assembled in templated polymerized liposomes. The research presented here specifically focus on the analytical aspects of protein sensing via polymerized liposome vesicles. Lanthanide ions (Eu3+ and Tb3+) are incorporated into polymerized liposome with the expectation to "report" quantitative and qualitative information on the interacting protein. Our proposition is to extract quantitative and qualitative information from the luminescence intensity and the luminescence lifetime of the lanthanide ion, respectively. A thorough investigation is presented regarding the analytical potential of these two parameters for protein sensing. Two chemometic approaches - namely partial least squares (PLS-1) and artificial neural networks (ANN) - are compared towards quantitative and qualitative analysis of proteins in binary mixtures.

Page generated in 0.0639 seconds