• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 4
  • Tagged with
  • 23
  • 23
  • 23
  • 14
  • 14
  • 13
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LA DECOMPOSITION PROPRE GENERALISEE POUR LA RESOLUTTON DE PROBLEMES MULTIPHYSIQUES TRANSITOlRES COUPLES DEDIES A LA MECANIQUE DES MATERIAUX - MAILLAGE ADAPTATIF ET COUPLAGE AVEC LA MAN

Nguyen, Tuan Linh 20 November 2012 (has links) (PDF)
Ce travail de recherche est une contribution au développement de la méthode Décomposition Propre Généralisée (PGD) à la résolution de problèmes multiphysiques transitoires couplés à différents temps caractéristiques dédiés à la mécanique des matériaux. Cette méthode se résume à la recherche de solutions d'Equations aux Dérivées Partielles sous forme séparée. L'équation de la chaleur transitoire 2D est tout d'abord traitée. Une technique de maillage adaptatif automatique est proposée afin d'adapter la discrétisation aux différentes zones transitoires de la solution. L'imbrication entre la technique de maillage adaptatif et la PGD est discutée à travers deux types de couplage. Le premier consiste à recalculer la solution PGD sur chaque nouveau maillage à partir de la solution nulle et le second à calculer la solution sur chaque nouveau maillage en conservant les fonctions de base de la solution générées sur le maillage précédent. Le premier couplage apparaît plus performant dans la mesure où peu de modes sont nécessaires pour décrire précisément la solution sur le maillage final. Néanmoins, le second couplage permet de réduire fortement le nombre d'enrichissements cumulé au cours de l'ensemble du procédé de maillage adaptatif. Quel que soit le couplage utilisé, la technique de maillage adaptatif est capable de décrire automatiquement des transitoires localisés. La résolution de l'équation de la chaleur ID transitoire avec une non linéarité dans le terme source est envisagée. Une nouvelle approche couplant la méthode PGD et la Méthode Asymptotique Numérique (MAN) est proposée et testée. Elle permet de résoudre efficacement certaines familles de problèmes transitoires non linéaires. Enfm, deux problèmes multiphysiques multitemps sont traités. Il s'agit d'un partiellement couplé diffusothermique et d'un fortement couplé thermoviscoélastique. La PGD permet de prédire précisément la réponse de ces problèmes multiphysiques pour lesquels les termes de couplage font apparaître des transitoires spécifiques que l'on obtient avec un maillage suffisamment fin. La stratégie de maillage adaptatif associée à la PGD trouve alors tout son sens dans ces situations multitemps fortement couplées. L'association de la technique de maillage adaptatif avec la PGD mène aux mêmes conclusions que dans le cas avec une seule physique. La discussion porte sur deux stratégies de construction des maillages : concaténer les deux maillages temporelles de chaque physique ou adapter indépendamment le maillage de chaque physique. La concaténation des deux maillages permet de converger avec moins d'étapes de maillage adaptatif mais avec des densités de maillage beaucoup plus importantes.
2

Méthode asymptotique numérique pour l'étude multi échelle des instabilités dans les matériaux hétérogènes / Asymptotic numerical method for multiscale study of the instabilities in the heterogeneous materials

Nezamabadi, Saeid 03 December 2009 (has links)
La modélisation multi-échelle des matériaux hétérogènes est un challenge en mécanique numérique. Dans le contexte non linéaire, les propriétés effectives des matériaux hétérogènes ne peuvent pas être obtenues par les techniques utilisées pour les milieux linéaires car le principe de superposition n'est plus valable. Ainsi, dans le contexte des éléments finis, une alternative au maillage de l'ensemble de la structure avec la prise en compte de toutes les hétérogénéités, est l'utilisation de la méthode d'éléments finis multi-échelles (EF2). Les techniques de ce type offrent de nombreux avantages, tels que la prise en compte : des grandes déformations au niveau micro et macro sont souvent résolus par les procédures classiques de Newton-Raphson, qui sont généralement adaptées à la résolution des problèmes non linéaires mais qui présentent des difficultés en présence d'instabilités. Dans cette thèse, la combinaison de la méthode des éléments finis multi-échelles (EF2) et la méthode asymptotique numérique (MAN), surnommée MAN multi-échelle, permet de mettre en œuvre une technique numérique efficace pour traiter les problèmes d'instabilités dans le cadre des matériaux hétérogènes. Ces instabilités peuvent survenir à la fois au niveau micro et au niveau macro. Différentes classes de comportement des matériaux ont été implantées dans notre procédure. Pour améliorer le conditionnement du problème multi-échelle à résoudre, une technique d'homogénéisation du second ordre a été également adaptée dans le cadre de la technique MAN multi-échelle. Par ailleurs, afin de réduire le temps de calcul, quelques techniques ont été proposées dans ce travail / The multiscale modelling of the heterogeneous materials is a challenge in computational mechanics. In the nonlinear case, the effective properties of heterogeneous materials cannot be obtained by the techniques used for linear media because the superposition principle is no longer valid. Hence, in the context of the finite element method, an alternative to mesh the whole structure, including all heterogeneities, is the use of the multiscale finite element method (FE2). These techniques have many advantages, such as taking into account : large deformations at the micro and macro scales, the nonlinear constitutive behaviors of the material, and microstructure evolution. The nonlinear problems in micro and macro scales are often solved by the classical Newton-Raphson procedures, which are generally suitable for solving nonlinear problems but have difficulties in the presence of instabilities. In this thesis, the combination of the multiscale finite element method (FE2) and the asymptotic numerical method (ANM), called Multiscale-ANM, allows one to obtain a numerical effective technique for dealing with the instability problems in the context of heterogeneous materials. These instabilities can occur at both micro and macro levels. Different classes of material constitutive relation have been implemented within our procedure. To improve the multiscale problem conditioning, a second order homogenization technique was also adapted in the framework of Multiscale-ANM technique. Furthermore, to reduce the computational time, some techniques been proposed in this work
3

Etude mathématique et numérique de quelques modèles cinétiques et de leurs asymptotiques : limites de diffusion et de diffusion anormale / Mathematical and numerical study of some kinetic models and of their asymptotics : diffusion and anomalous diffusion limits

Hivert, Hélène 05 October 2016 (has links)
L'objet de cette thèse est la construction de schémas numériques pour les équations cinétiques dans différents régimes de diffusion anormale. Comme le modèle devient raide en s'approchant du modèle asymptotique, les méthodes numériques standard deviennent coûteuses dans ce régime. Les schémas Asymptotic Preserving ont été introduits pour pallier à cette difficulté. Ils sont en effet stables le long de la transition du régime mésoscopique au régime microscopique. Dans le premier chapitre, nous considérons le cas d'une distribution d'équilibre qui est une fonction à queue lourde et dont le moment d'ordre 2 est infini. Le poids important des grandes vitesses de l'équilibre fait tomber la limite de diffusion usuelle en défaut, et on montre que le modèle asymptotique est une équation de diffusion fractionnaire. En nous basant sur une analyse asymptotique formelle de la convergence vers le modèle limite, nous construisons trois schémas AP pour le problème. La discrétisation en vitesse est discutée afin de prendre en compte correctement les grandes vitesses, et nous montrons que le troisième schéma est en outre uniformément précis au cours de la transition vers le régime microscopique. Dans le chapitre 2, nous étendons ces résultats au cas d'une fréquence de collision dégénérée en 0 qui mène aussi à une équation de diffusion fractionnaire. Nous adaptons ensuite ces méthodes numériques au cas d'une limite de diffusion normale avec scaling en temps anormal dans l'équation cinétique dans le chapitre 3. Dans ce cadre, la lenteur de la convergence vers le modèle asymptotique rend nécessaire une adaptation de l'approche AP des chapitres précédents. Enfin, le chapitre 4 présente un schéma AP pour l'équation cinétique dans le cas heavy-tail du chapitre 1 lorsque l'opérateur de collision est non-local. / In this thesis, we construct numerical schemes for kinetic equations in some anomalous diffusion regimes. As the model becomes stiff when reaching the asymptotic model, the standard numerical methods become costly in this regime. Asymptotic Preserving (AP) schemes have been designed to overcome this difficulty. Indeed, they are uniformly stable along the transition from the mesoscopic regime to the microscopic one. In the first chapter, we study the case of a heavy-tailed equilibrium distribution, with infinite second order moment. The importance of the high velocities in the equilibrium makes the classical diffusion limit fail, and one can prove that the asymptotic model is a fractional diffusion equation. We construct three AP schemes for this problem, based on a formal asymptotic analysis of the convergence towards the limit model. The discretization of the velocities is then discussed to take into account the high velocities. Moreover, we prove that the third scheme enjoys the stronger property of being uniformly accurate along the convergence towards the microscopic regime. In chapter 2, we extend these results to the case of a degenerated collision frequency, also leading to a fractional diffusion limit. In chapter 3, these methods are then adapted to the case of a classical diffusion limit with anomalous time scale in the kinetic equation. In this case, an adaptation of the AP approach of the previous chapter is needed, because of the slow convergence rate of the kinetic equation towards the limit model. Eventually, a AP scheme for kinetic equation with heavy-tailed equilibria and non local collision operator is presented in chapter 4.
4

Calcul et optimisation d’absorbeurs pendulaires dans une chaîne de traction automobile / Simulation and optimisation of pendular absorbers for Automotive powertrain

Renault, Alexandre 12 July 2018 (has links)
Dans le cadre de la réduction des émissions polluantes et de la consommation des véhicules à moteur thermique, les constructeurs cherchent à diminuer la cylindrée et la vitesse de rotation des moteurs de chaines cinématiques. Ces évolutions conduisent, du fait du principe même du moteur à pistons, à une augmentation significative des irrégularités de rotation de celui-ci. Depuis quelques années, le système à pendule est apparu dans les groupes moto-propulseurs automobiles. Il agit à la manière d’un batteur, accordé sur l’ordre d’allumage du moteur thermique, et permet ainsi une réduction des vibrations. Cependant, les fortes non-linéarités intrinsèques aux pendules provoquent un désaccord du système à grande amplitude synonyme de perte de performances. Cette thèse a pour but d’améliorer la compréhension et le comportement du système en interaction avec la chaîne de traction automobile. En renfort des traditionnelles méthodes d’intégrations temporelles, le système non linéaire est résolu par la méthode asymptotique numérique couplée à la méthode de l’équilibrage harmonique. Une méthode originale de continuation d’antirésonance est également proposée ainsi que des règles de conception issues de développements analytiques. La validation par l’expérience montre une amélioration significative des performances du système. / In the context of the reduction of polluting emissions and fuel consumption of thermal engines of vehicles, automotive manufacturers try to reduce cylinder capacity and engine speed of rotation. These evolutions lead to significant increase of irregularities of rotation. The so-called centrifugal pendulum vibration absorber is a recent solution of mitigation of torsional vibrations in automotive powertrains. It acts as a mass damper tuned on the firing order of the engine and allows reduction of vibrations. However, strong non-linearities intrinsic to pendular systems cause a detuning of the device at large amplitude of motion resulting in a loss of performances. This thesis aims to improve the understanding and the behavior of the system in interaction with an automotive driveline. In support of classic time integration procedures, the nonlinear system is solved through the asymptotic numerical method coupled to the harmonic balance method. In addition, an original continuation of antiresonance method is proposed as well as some design rules derived from analytical developments. Experimental validation shows a significant enhancement of performances of the system.
5

Une méthode de calcul des modes de vibrations non linéaires de structures

Arquier, Remi 30 April 2007 (has links) (PDF)
Cette thèse vise à fournir et éprouver de nouveaux outils théoriques, numériques et informatiques de calculs de modes non linéaires pour des structures à non linéarité géométrique et discrétisées par éléments finis. La surface invariane de l'espace des phases caractérisant le mode non linéaire est décrite à partir d'une famille d'orbites périodiques solutions des équations du mouvement. Chaque orbite périodique est discrétisée en temps (schéma de Newmark et de Simo) et formulée à l'aide d'un système d'équation global contenant toutes les inconnues à tous les pas de temps, c'est la méthode simultanée, par opposition à la méthode de tir classique. Les familles d'orbites solutions du système global sont obtenues par la méthode de continuation MAN (Méthode Asymptotique Numérique). Des variations autour de la MAN sont aussi abordées. Il s'agit d'apports liés au contrôle de la continuation au passage des points de bifurcations à l'aide d'une perturbation ajoutée au système d'équation non linéaire. On présente un outil-logiciel, MANLAB, permettant la continuation interactive de diagrammes de bifurcation complexes, qui est appliquée à la continuation de famille d'orbites périodiques.
6

Différentiation automatique de codes mécaniques : application à l'analyse de sensibilité des tôles sandwich aux paramètres de modélisation / Automatic differentiation of mechanical codes : application to sensitivity analysis of viscoelastic sandwich sheets with respect to modeling parameters

Lampoh, Komlanvi 18 September 2012 (has links)
En ingénierie, pour mieux comprendre le comportement mécanique d'une structure soumise à une certaine perturbation des paramètres de conception, on procède souvent à une analyse de sensibilité. Celle-ci fournit des informations quantitatives et qualitatives sur le comportement du modèle étudié et offre un accès aux gradients utilisables dans ces méthodes d'identification et d'optimisation. Dans cette thèse, nous démontrons que ces informations peuvent être obtenues à coût de développement faible en appliquant un outil de Différentiation Automatique (DA) au code informatique qui implémente le modèle. Nous adaptons la technique DA à la méthode asymptotique numérique, dans sa version Diamant, pour le calcul de la sensibilité des solutions numériques de problèmes non-linéaires discrétisés par la méthode des éléments finis. Nous discutons de manière générique à la fois les aspects théoriques et l'implémentation de plusieurs algorithmes écrits en Matlab. Les applications concernent des poutres et des plaques sandwich dans les cas statiques et dynamique (vibration libre). Les sensibilités sont calculées par rapport aux paramètres géométriques, mécanique et par rapport à des matrices de rigidité élémentaires. La généralité de nos développements permet de prendre en compte plusieurs lois viscoélastiques sans effort supplémentaire. Trois types de modèles viscoélastiques sont étudiés : module complexe constant, faible amortissement et fort amortissement. Comparée à l'approximation par différences finis souvent utilisée en mécanique, notre approche fournit des résultats plus précis pour la sensibilité de la réponse d'une structure lorsque les paramètres de conception sont perturbés. Elle permet aussi de réduire le temps de calcul / In engineering, for a better understanding of the mechanical behavior of a structure submitted to some perturbation of the modeling parameters, one often proceed to a sensitivity analysis. This provides quantitative and qualitative information on the behavior of the model under study and gives access to gradients that may be used in identification and optimization methods. In this thesis, we demonstrate that this information may be obtained at a low development effort by applying an Automatic Differentiation (AD) tool to the computer code that implements the model. We adapt the AD techniques to the Asymptotic Numerical Method (ANM), in its Diamant version for sensitivity computations of numerical solutions of nonlinear problems discretized through a finite element method. We discuss in a generic manner both the theoretical aspects and the implementation of several algorithms written in Matlab. Applications are concerned with sandwich beams and sandwich plates in both the static and dynamic (free vibration) cases. Sensitivities are computed with respect to geometric and mechanical parameters, and with respect to elementary stiffness matrix. The generality of our developments allows to take into account several viscoelastic laws with no additional effort. Three kinds of viscoelastic models are studied: constant complex modulus, low damping and higher damping. In comparison with the finite difference approximation often used in mechanics, our approach provides more accurate results for the sensitivity of the structure response to a perturbation of the modeling parameters. It also allows a reduction of the computation effort
7

Analyse et optimisation des batteurs dynamiques non linéaires / Analysis and optimization of nonlinear vibration absorbers

Djemal, Fathi 15 January 2015 (has links)
Les vibrations qui sont en général source de dérangement, d’usure et même destruction des machines et structures mécaniques doivent être contrôlées ou éliminées. Pour cette raison, la lutte contre les vibrations est devenue depuis des années un enjeu majeur pour les chercheurs de laboratoire et de développement dans l’industrie afin de développer des solutions efficaces contre ces problèmes. De nombreuses technologies ont donc été développées. Parmi ces technologies, les absorbeurs de vibration non linéaires présentent des performances importantes dans l’atténuation de vibration sur une large bande de fréquences. C’est dans ce contexte que cette thèse se focalise sur l’analyse et l’optimisation des absorbeurs de vibration non linéaires. L’objectif de cette thèse est d’analyser le comportement dynamique non linéaire des systèmes présentant des absorbeurs de vibration non linéaires. Pour cela, un modèle dynamique d’un système à deux degrés de liberté est développé mettant en équations le comportement non linéaire. La résolution des équations de mouvement est faite par la Méthode Asymptotique Numérique (MAN). La performance de cette méthode est montrée via une comparaison avec la méthode de Newton-Raphson. L’analyse des modes non linéaires du système ayant une non-linéarité cubique est faite par une formulation explicite des Fonctions de Réponse en Fréquence non linéaires (FRFs) et les Modes Normaux Non linéaires (MNNs). Un démonstrateur sur la base d’un système simple à deux degré de liberté est mis en place afin de recaler les modèles envisagés sur la base des résultats expérimentaux trouvés. / Vibrations are usually undesired phenomena as they may cause discomfort, disturbance, damage, and sometimes destruction of machines and structures. It must be reduced or controlled or eliminated. For this reason, the vibrations attenuation became a major issue for scientists and researchers in order to develop effective solutions for these problems. Many technologies have been developed. Among these technologies, the nonlinear vibration absorbers have significant performance in the vibration attenuation over a wide frequency band. In this context, this thesis focuses on the analysis and optimization of nonlinear vibration absorbers. The objective of the thesis is to analyze the nonlinear dynamic behavior of systems with nonlinear vibration absorbers. For this, a dynamic model of a two degrees of freedom system is developed. The Asymptotic Numerical Method (ANM) is used to solve the nonlinear equations of motion. The performance of this method is shown via a comparison with the Newton-Raphson method. The nonlinear modal analysis system with cubic nonlinearity is made by an explicit formulation of the nonlinear Frequency Response Functions (FRFs) and Nonlinear Normal Modes (MNNs). An experimental study is performed to validate the numerical results.
8

Simulation du soudage par friction et malaxage à l'aide de méthodes sans maillage / Friction stir welding simulation using meshless methods

Timesli, Abdelaziz 27 April 2013 (has links)
Le procédé de soudage par friction et malaxage est un procédé récent qui a été développé au sein de l'institut de soudure britannique "The Welding Institute" au début des années 90. Ce procédé, utilisé généralement en aéronautique, est sans apport de matière et permet de souder principalement des alliages d'aluminium difficilement soudables par les procédés classiques de soudage. Il consiste à malaxer le matériau de base à l'aide d'un outil constitué d'un pion et d'un épaulement frottant sur les faces supérieures des tôles à souder. La modélisation de ce procédé est très complexe puisque ce dernier implique des couplages entre des phénomènes mécaniques, thermiques et métallurgiques. Le malaxage dans le procédé de soudage FSW est difficile à simuler à l'aide de la méthode des éléments finis (en lagrangien) puisque la zone proche de l'outil de soudage est le siège de grandes déformations. Donc le remaillage est nécessaire. Cependant, le remaillage est cher et très difficile pour les problèmes tridimensionnels. Par ailleurs, après un remaillage, il est nécessaire d'interpoler les champs (vitesses, contraintes,...) correspondant à la solution courante, ce qui peut introduire des erreurs supplémentaires dans le calcul (on parle de diffusion numérique). Nous proposons dans ce travail des modèles basés sur la méthode sans maillage dite "Smoothed Particle Hydrodynamics SPH" et la méthode des moindres carrés mobiles (Moving Least Square MLS) pour la simulation de ce procédé. Ces modèles sont formulés dans le cadre lagrangien et utilisent la forme forte des équations aux dérivées partielles. Le premier modèle basé sur SPH considère la zone de soudure comme un fluide non newtonien faiblement compressible et dont la viscosité dépend de la température. Ce modèle est proposé pour la simulation numérique du comportement thermomécanique d'un matériau soudé par le procédé FSW. Dans le deuxième modèle, un algorithme itératif implicite de premier ordre a été proposé, pour simuler le malaxage de la matière dans le cas d'un matériau viscoplastique, en utilisant la méthode MLS et la technique de collocation. Le troisième modèle est un algorithme implicite d'ordre élevé basée sur le couplage de la méthode MLS et la Méthode Asymptotique Numérique MAN. Cet algorithme permet de réduire le temps de calcul par rapport à l'algorithme itératif implicite de premier ordre. La validation de ces trois modèles proposés a été faite par le code industriel Fluent / Friction stir welding is a recent process that has been developed by the British Welding Institute TWI "The Welding Institute" since 1990s. This process, generally used in aerospace, does not need additional material and allows mainly joining plates of aluminum alloys which are difficult to weld by the classical welding processes. It consists in mixing the base material using a tool comprising a pin and a shoulder which heats the plates to be welded by friction. The modeling of this process is very complex since it involves the coupling between mechanical, thermal and metallurgical phenomena. The mixing in welding process FSW is difficult to simulate using finite element method in lagrangian framework since the area near the welding tool is submitted to large deformations. So remeshing procedure is often required. However, remeshing can be very expensive and difficult to perform for three-dimensional problems. Moreover, after remeshing step, it is necessary to interpolate the fields (velocities, constraints ...) corresponding to the current solution, which may lead to additional errors in the calculation (called numerical diffusion). We propose in this work models based on meshless methods called "Smoothed Particle Hydrodynamics SPH" and Moving Least Square method for the simulation of this welding process. These models are formulated in lagrangian framework and use the strong form of partial differential equations. The first model based on SPH considers the welding zone as a weakly compressible non-newtonian fluid and whose viscosity depends on the temperature. This model is proposed for the numerical simulation of thermo-mechanical behavior of a welded material by FSW process. The second model is a first order implicit iterative algorithm proposed to simulate material mixing in the case a visco-plastic behavior using the MLS method and the collocation technique. The third model is a high order implicit algorithm based on the coupling of MLS method and Asymptotic Numerical Method (ANM). This algorithm allows reducing the computation time by comparison with the first order implicit iterative algorithm. The validation of these three proposed models was done by the industrial code Fluent
9

Solutions périodiques et quasi-périodiques de systèmes dynamiques d'ordre entier ou fractionnaire : applications à la corde frottée / Periodic and quasi-periodic solutions of dynamical systems of integer or fractional order : applications to the bowed string

Vigué, Pierre 21 September 2017 (has links)
L'étude par continuation des solutions périodiques et quasi-périodiques est appliquée à plusieurs modèles issus du violon. La continuation pour un modèle à un degré de liberté avec friction régularisée permet de montrer la préservation, par rapport à la friction de Coulomb, des bifurcations de cycle limite (une vitesse maximale et une force minimale permettant le mouvement de Helmholtz) et de propriétés globales de la branche de solution (croissance de l'amplitude avec la vitesse, décroissance de la fréquence avec la force normale). L'équilibrage harmonique est évalué sur la friction régularisée et a des propriétés de convergence intéressantes (erreur faible, monotone, à décroissance rapide). La continuation sur un modèle à deux modes donne accès aux solutions de registres supérieurs, dont la stabilité coïncide avec l'expérience. La valeur retenue pour l'inharmonicité peut modifier fortement le diagramme de bifurcation. Une nouvelle méthode de continuation des solutions quasi-périodiques est proposée. Elle associe l'EH étendu à deux pulsations avec la Méthode Asymptotique Numérique. Une attention particulière est portée à la rapidité des calculs, face à la croissance rapide de la taille des systèmes à inverser. Un modèle de friction prenant en compte la température au point de contact est reformulé à l'aide d'une dérivée fractionnaire. Nous proposons une méthode de continuation de solutions périodiques de systèmes contenant des dérivées ou intégrales fractionnaires. Nous établissons une condition suffisante pour que les cycles asymptotiques du cadre causal (Caputo) soient solutions du cadre que nous avons choisi. / The continuation of periodic and quasi-periodic solutions is performed on several models derived from the violin. The continuation for a one degree-of-freedom model with a regularized friction shows, compared with Coulomb friction, the persistence of limit cycle bifurcations (a maximum bow speed and a minimum normal force allowing Helmholtz motion) and of global properties of the solution branch (increase of amplitude with respect to the bow speed, decrease of frequency with respect to the normal force). The Harmonic Balance Method is assessed on this regularized friction system and shows interesting convergence properties (the error is low, monotone and rapidly decreasing). For two modes the continuation shows higher register solutions with a plausible stability. A stronger inharmonicity can greatly modify the bifurcation diagram. A new method is proposed for the continuation of quasi-periodic solutions. It couples a two-pulsations HBM with the Asymptotic Numerical Method. We have taken great care to deal efficiently with large systems of unknowns. A model of friction that takes into account temperature of the contact zone is reformulated with a fractional derivative. We then propose a method of continuation of periodic solutions for differential systems that contain fractional operators. Their definition is usually restricted to causal solutions, which prevents the existence of periodic solutions. Having chosen a specific definition of fractional operators to avoid this issue we establish a sufficient condition on asymptotically attractive cycles in the causal framework to be solutions of our framework.
10

Investigations numériques multi-échelle et multi-niveau des problèmes de contact adhésif à l'échelle microscopique / Multiscale and multilevel numerical investigation of microscopic contact problems

Du, Shuimiao 05 October 2018 (has links)
L'objectif ultime de ce travail est de fournir des méthodologies robustes et efficaces sur le plan des calculs pour la modélisation et la résolution des problèmes de contact adhésifs basés sur le potentiel de Lennard-Jones (LJ). Pour pallier les pièges théoriques et numériques du modèle LJ liés à ses caractéristiques nondéfinies et non-bornées, une méthode d'adaptativité en modèle est proposée pour résoudre le problème purement-LJ comme limite d'une séquence de problèmes multiniveaux construits de manière adaptative. Chaque membre de la séquence consiste en une partition modèle entre le modèle microscopique LJ et le modèle macroscopique de Signorini. La convergence de la méthode d'adaptativité est prouvée mathématiquement sous certaines hypothèses physiques et réalistes. D'un autre côté, la méthode asymptotique numérique (MAN) est adaptée et utilisée pour suivre avec précision les instabilités des problèmes de contact à grande échelle et souples. Les deux méthodes sont incorporées dans le cadre multiéchelle Arlequin pour obtenir une résolution précise, tout en réduisant les coûts de calcul. Dans la méthode d'adaptativité en modèle, pour capturer avec précision la localisation des zones d'intérêt (ZDI), une stratégie en deux résolutions est suggérée : une résolution macroscopique est utilisée comme une première estimation de la localisation de la ZDI. La méthode Arlequin est alors utilisée pour obtenir une résolution microscopique en superposant des modèles locaux aux modèles globaux. En outre, dans la stratégie MAN, la méthode Arlequin est utilisée pour supprimer les oscillations numériques, améliorer la précision et réduire le coût de calcul. / The ultimate goal of this work is to provide computationally efficient and robust methodologies for the modelling and solution of a class of Lennard-Jones (LJ) potential-based adhesive contact problems. To alleviate theoretical and numerical pitfalls of the LJ model related to its non-defined and nonbounded characteristics, a model-adaptivity method is proposed to solve the pure-LJ problem as the limit of a sequence of adaptively constructed multilevel problems. Each member of the sequence consists of a model partition between the microscopic LJ model and the macroscopic Signorini model. The convergence of the model-adaptivity method is proved mathematically under some physical and realistic assumptions. On the other hand, the asymptotic numerical method (ANM) is adapted to track accurately instabilities for soft contact problems. Both methods are incorporated in the Arlequin multiscale framework to achieve an accurate resolution at a reasonable computational cost. In the model-adaptivity method, to capture accurately the localization of the zones of interest (ZOI), a two-step strategy is suggested: a macroscopic resolution is used as the first guess of the ZOI localization, then the Arlequin method is used there to achieve a fine scale resolution. In the ANM strategy, the Arlequin method is also used to suppress numerical oscillations and improve accuracy.

Page generated in 0.1406 seconds