• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting post-release software faults in open source software as a menas of measuring intrinsic software product quality / Prédire les défauts Post-Release de logiciels à code ouvert comme méthode pour mesurer la qualité intrinsèque du produit logiciel

Ndenga Malanga, Kennedy 22 November 2017 (has links)
Les logiciels défectueux ont des conséquences coûteuses. Les développeurs de logiciels doivent identifier et réparer les composants défectueux dans leurs logiciels avant de les publier. De même, les utilisateurs doivent évaluer la qualité du logiciel avant son adoption. Cependant, la nature abstraite et les multiples dimensions de la qualité des logiciels entravent les organisations de mesurer leur qualités. Les métriques de qualité logicielle peuvent être utilisées comme proxies de la qualité du logiciel. Cependant, il est nécessaire de disposer d'une métrique de processus logiciel spécifique qui peut garantir des performances de prédiction de défaut meilleures et cohérentes, et cela dans de différents contextes. Cette recherche avait pour objectif de déterminer un prédicteur de défauts logiciels qui présente la meilleure performance de prédiction, nécessite moins d'efforts pour la détection et a un coût minimum de mauvaise classification des composants défectueux. En outre, l'étude inclut une analyse de l'effet de la combinaison de prédicteurs sur la performance d'un modèles de prédiction de défauts logiciels. Les données expérimentales proviennent de quatre projets OSS. La régression logistique et la régression linéaire ont été utilisées pour prédire les défauts. Les métriques Change Burst ont enregistré les valeurs les plus élevées pour les mesures de performance numérique, avaient les probabilités de détection de défaut les plus élevées et le plus faible coût de mauvaise classification des composants. / Faulty software have expensive consequences. To mitigate these consequences, software developers have to identify and fix faulty software components before releasing their products. Similarly, users have to gauge the delivered quality of software before adopting it. However, the abstract nature and multiple dimensions of software quality impede organizations from measuring software quality. Software quality metrics can be used as proxies of software quality. There is need for a software process metric that can guarantee consistent superior fault prediction performances across different contexts. This research sought to determine a predictor for software faults that exhibits the best prediction performance, requires least effort to detect software faults, and has a minimum cost of misclassifying components. It also investigated the effect of combining predictors on performance of software fault prediction models. Experimental data was derived from four OSS projects. Logistic Regression was used to predict bug status while Linear Regression was used to predict number of bugs per file. Models built with Change Burst metrics registered overall better performance relative to those built with Change, Code Churn, Developer Networks and Source Code software metrics. Change Burst metrics recorded the highest values for numerical performance measures, exhibited the highest fault detection probabilities and had the least cost of mis-classification of components. The study found out that Change Burst metrics could effectively predict software faults.

Page generated in 0.0911 seconds