• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2376
  • 508
  • 266
  • 201
  • 96
  • 66
  • 57
  • 31
  • 24
  • 20
  • 19
  • 17
  • 11
  • 10
  • 10
  • Tagged with
  • 4621
  • 4621
  • 1433
  • 744
  • 663
  • 616
  • 605
  • 605
  • 599
  • 583
  • 577
  • 542
  • 540
  • 503
  • 473
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reinforcement learning and approximation complexity

McDonald, Matthew A. F Unknown Date (has links)
Many tasks can easily be posed as the problem of responding to the states of an external world with actions that maximise the reward received over time. Algorithms that reliably solve such problems exist. However, their worst-case complexities are typically more than proportional to the size of the state space in which a task is to be performed. Many simple tasks involve enormous numbers of states, which can make the application of such algorithms impractical. This thesis examines reinforcement learning algorithms which effectively learn to perform tasks by constructing mappings from states to suitable actions. In problems involving large numbers of states, these algorithms usually must construct approximate, rather than exact, solutions and the primary issue examined in the thesis is the way in which the complexity of constructing adequate approximations scales as the size of a state space increases. The vast majority of reinforcement learning algorithms operate by constructing estimates of the long-term value of states and using these estimates to select actions. The potential effects of errors in such estimates are examined and shown to be severe. Empirical results are presented which suggest that minor errors are likely to result in significant losses in many problems, and where such losses are most likely to occur. The complexity of constructing estimates accurate enough to prevent significant losses is also examined empirically and shown to be substantial.
2

Creating diverse ensemble classifiers to reduce supervision

Melville, Prem Noel 28 August 2008 (has links)
Not available / text
3

Reasoning and learning for intelligent agents /

Sioutis, Christos. Unknown Date (has links)
Intelligent Agents that operate in dynamic, real-time domains are required to embody complex but controlled behaviours, some of which may not be easily implementable. This thesis investigates the difficulties presented with implementing Intelligent Agents for such environments and makes contributions in the fields of Agent Reasoning, Agent Learning and Agent-Oriented Design in order to overcome some of these difficulties. / The thesis explores the need for incorporating learning into agents. This is done through a comprehensive review of complex application domains where current agent development techniques are insufficient to provide a system of acceptable standard. The theoretical foundations of agent reasoning and learning are reviewed and a critique of reasoning techniques illustrates how humans make decisions. Furthermore, a number of learning and adaptation methods are introduced. The concepts behind Intelligent Agents and the reasons why researchers have recently turned to this technology for implementing complex systems are then reviewed. Overviews of different agent-oriented development paradigms are explored, which include relevant development platforms available for each one. / Previous research on modeling how humans make decisions is investigated, in particular three models are described in detail. A new cognitive, hybrid reasoning model is presented that fuses the three models together to offset the demerits of one model by the merits of another. Due to the additional elements available in the new model, it becomes possible to define how learning can be integrated into the reasoning process. In addition, an abstract framework that implements the reasoning and learning model is defined. This framework hides the complexity of learning and allows for designing agents based on the new reasoning model. / Finally, the thesis contributes the design of an application where learning agents are faced with a rich, real-time environment and are required to work as a teamto achieve a common goal. Detailed algorithmic descriptions of the agent's behaviours as well as a subset of the source code are included in the thesis. The empirical results obtained validate all contributions within the domain of Unreal Tournament. Ultimately, this dissertation demonstrates that if agent reasoning is implemented using a cognitive reasoning model with defined learning goals, an agent can operate effectively in a complex, real-time, collaborative and adversarial environment. / Thesis (PhDComputerSystemsEng)--University of South Australia, 2006.
4

Reinforcement learning and approximation complexity

McDonald, Matthew A. F Unknown Date (has links)
Many tasks can easily be posed as the problem of responding to the states of an external world with actions that maximise the reward received over time. Algorithms that reliably solve such problems exist. However, their worst-case complexities are typically more than proportional to the size of the state space in which a task is to be performed. Many simple tasks involve enormous numbers of states, which can make the application of such algorithms impractical. This thesis examines reinforcement learning algorithms which effectively learn to perform tasks by constructing mappings from states to suitable actions. In problems involving large numbers of states, these algorithms usually must construct approximate, rather than exact, solutions and the primary issue examined in the thesis is the way in which the complexity of constructing adequate approximations scales as the size of a state space increases. The vast majority of reinforcement learning algorithms operate by constructing estimates of the long-term value of states and using these estimates to select actions. The potential effects of errors in such estimates are examined and shown to be severe. Empirical results are presented which suggest that minor errors are likely to result in significant losses in many problems, and where such losses are most likely to occur. The complexity of constructing estimates accurate enough to prevent significant losses is also examined empirically and shown to be substantial.
5

Methods for cost-sensitive learning /

Margineantu, Dragos D. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2002. / Typescript (photocopy). Includes bibliographical references (leaves 122-138). Also available on the World Wide Web.
6

Creating diverse ensemble classifiers to reduce supervision

Melville, Prem Noel, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Vita. Includes bibliographical references.
7

Incremental nonparametric discriminant analysis based active learning and its applications a thesis submitted to Auckland University of Technology in partial fulfillment [sic] of the requirements for the degree of Master of Computer and Information Sciences (MCIS), 18th March 2010 /

Dhoble, Kshitij. January 2010 (has links)
Thesis (MCIS)--AUT University, 2010. / Includes bibliographical references. Also held in print ( leaves : ill. ; 30 cm.) in the Archive at the City Campus (T 006.31 DHO)
8

Statistical learning algorithms : multi-class classification and regression with non-i.i.d. sampling /

Pan, Zhiwei. January 2009 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2009. / "Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [65]-75)
9

A study of distance-based machine learning algorithms /

Wettschereck, Dietrich. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 1995. / Typescript (photocopy). Includes bibliographical references (leaves 141-151). Also available on the World Wide Web.
10

Regularized adaptation : theory, algorithms, and applications /

Li, Xiao, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 132-146).

Page generated in 0.0654 seconds