21 |
Magnetic investigations in the J-M reef section of the Stillwater Complex, MontanaWnukowski, Joseph Daniel 01 May 2015 (has links)
The Stillwater Complex J-M reef, the only economic platinum deposit in the United States, consists of a 0.5 to 4 m-thick stratiform horizon of PGE-rich sulfides in an Archean layered mafic intrusion. The origin of this reef has been studied extensively using geochemical methods, yet remains highly debated. Dynamic magmatic processes have been virtually ignored in these geochemical studies. Magnetic methods provide a proven inexpensive approach to offer rapid, and reproducible results to deliver insight into these dynamic processes. I propose to investigate the variations of magnetic properties of layered rocks of the Stillwater Complex in the stratigraphic vicinity of the J-M reef. In this study, detailed magnetic methods were performed on a 115 ft core containing the J-M reef and adjacent rocks. A previously undiscovered cyclicity of magnetic susceptibility was found in the hanging wall and J-M reef section. Further tests were performed to determine the origin of the magnetic cycles. The footwall section lacked the magnetic properties seen in the J-M reef and hanging wall rocks. Both anisotropy of magnetic susceptibility, and high field magnetic data was collected at a high resolution interval along the core. It is possible that the results of this study can be used to constrain the origin of the ore body.
|
22 |
Gas Migration Through Crystal-Rich Mafic Volcanic Systems and Application to Stromboli Volcano, Aeolian Islands, ItalyBelien, Isolde L.M.B. (Leo Maria Beatrijs), 1985- 09 1900 (has links)
xvii, 171 p. : ill. (some col.) / Crystals influence the migration of gas through magma. At low concentrations, they increase the bulk fluid properties, especially viscosity. At concentrations close to maximum packing, crystals form a rigid framework and magma cannot erupt. However, erupted pyroclasts with crystal contents close to the packing concentration are common at mafic volcanoes that exhibit Strombolian behavior. In this dissertation, I study the influence of solid particles on gas migration. I apply my results to Stromboli volcano, Italy, type locality of the normal Strombolian eruptive style, where gas moves through an essentially stagnant magma with crystallinity ∼50%. Specifically, I investigate the effect of crystals on flow regime, gas content (Chapter II), bubble concentration (number densities), bubble shapes, bubble sizes (Chapter III), and bubble rise velocities (gas flux) (Chapter IV). I find that gas-liquid flow regimes are not applicable at high particle concentrations and should be replaced by new, three-phase (gas-liquid-solid) regimes and that degassing efficiency increases with particle concentration (Chapter II). In Chapter III, I show that crystals modify bubble populations by trapping small bubbles and causing large bubbles to split into smaller ones and by modifying bubble shapes. In Chapter IV, I model Stromboli's crystal-rich magma as a network of capillary tubes and show that bubble rise velocities are significantly slower than free rise velocities in the absence of particles. In each chapter, I use analogue experiments to study the effect of different liquid and solid properties on gas migration in viscous liquids. I then apply my analogue results to magmatic conditions using simple parameterizations and/or numerical modeling or by comparing the results directly to observations made on crystal-rich volcanic rocks. Chapter V proposes a mechanism for Strombolian eruptions and gas migration through the crystalrich magma in which the effect of crystals is included. This model replaces the current twophase "slug" model, which cannot account for the high crystallinity observed at Stromboli. There are three appendices in this dissertation: a preliminary study of the influence of particles on gas expansion, image analysis methods, and the numerical code developed in Chapter IV.
This dissertation includes previously published and unpublished co-authored material. / Committee in charge: Katharine Cashman, Chairperson;
Alan Rempel, Member;
Mark Reed, Member;
Raghuveer Parthasarathy, Outside Member
|
23 |
“Contribuição à geologia, petrografia e geoquímica dos diques máficos da porção centro leste de Rondônia – sudoeste do Cráton Amazônico” / Contribuição à geologia, petrografia e geoquímica dos diques máficos da porção centro leste de Rondônia – sudoeste do Cráton AmazônicoTrindade Netto, Gil Barreto 16 July 2015 (has links)
Submitted by Igor Matos (igoryure.rm@gmail.com) on 2017-01-31T15:33:52Z
No. of bitstreams: 1
DISS_2015_Gil Barreto Trindade Netto.pdf: 5049678 bytes, checksum: fc6de3140f191e6636dbf827b66bc627 (MD5) / Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2017-01-31T15:48:13Z (GMT) No. of bitstreams: 1
DISS_2015_Gil Barreto Trindade Netto.pdf: 5049678 bytes, checksum: fc6de3140f191e6636dbf827b66bc627 (MD5) / Made available in DSpace on 2017-01-31T15:48:14Z (GMT). No. of bitstreams: 1
DISS_2015_Gil Barreto Trindade Netto.pdf: 5049678 bytes, checksum: fc6de3140f191e6636dbf827b66bc627 (MD5)
Previous issue date: 2015-07-16 / Dois tipos de diques máficos ocorrem na porção centro-leste de Rondônia, a sudoeste do Craton Amazônico. Os enxames posicionam-se na interface entre duas províncias geocronológicas e terrenos tectônicos distintos (Província Rio Negro-Juruena e Sunsás-Aguapeí, individualizadas no Terreno Jamari e Terreno Nova Brasilândia, respectivamente), separados pelo gráben paleozoico de Pimenta Bueno. Eles são denominados diabásio I e diabásio II. Diabásio I orienta-se preferencialmente segundo WNW-ESE, subordinadamente segundo NW-SE, e cortam rochas Proterozóicas das Formações Migrantinópolis e Terra Boa, e da Suíte Intrusiva Serra da Providência. Diabásio II é mais abundante na região e orienta-se preferencialmente segundo N-S e NNE-SSW, e subordinadamente segundo WSW-ESE. Esse enxame intrude rochas Paleozoicas das Formações Pedra Redonda e Pimenta Bueno. As principais diferenças petrográficas consistem na presença de ortopiroxênio somente nas amostras do diabásio II, e em diferentes texturas, predominantemente equigranular no diabásio II, e frequentemente porfirítica e microporfirítica no diabásio I. Geoquimicamente, as rochas de ambos os tipos classificam-se como basaltos toleíticos. Diabásio I (mg# 0,35-0,71) é mais enriquecido em FeO, TiO2, K2O, P2O5 e elementos incompatíveis em comparação a diabásio II (mg# 0,40-0,60). A diferença em grau de enriquecimento de ambos os magmas e a nítida distinção entre razões de elementos incompatíveis indicam que diabásio I e diabásio II são provenientes de diferentes mantos progenitores. A grande similaridade entre as médias e intervalos das razões de elementos incompatíveis dos diabásios I, Rb/Sr (0,03-0,39), K/Nb (197,42 - 1273,92), La/Nb (0,73 - 3,55), P/Nb (42,54 - 272,13), Ce/Zr (0,21 - 0,41), Ce/Yb (11,12 - 21,22), La/Yb (4,91 – 9,56), Zr/Th (61,05 – 140,54), Nb/Hf (1,34 – 7,48), Ce/Ta (36,20 – 199,65), Ba/Sr (0,65 – 2,15), Zr/Ti (75,85 – 203,08), Zr/Y (3,70 – 6,17) e metagabros do Grupo Nova Brasilândia (1,10 Ga), Rb/Sr (0,05-0,26), K/Nb (340,35 - 1304,49), La/Nb (1,68 - 3,23), P/Nb (74,20 - 264,74), Ce/Zr (0,19 - 0,67), Ce/Yb (7,04 – 57,85), La/Yb (2,86 – 25,23), Zr/Th (19,91 – 162,34), Nb/Hf (1,05 – 10,52), Ce/Ta (66,74 – 134,23), Ba/Sr (0,71 – 3,21), Zr/Ti (109,74 – 261,71), Zr/Y (2,96 – 6,16) sugere que ambos os magmas originaram-se de fontes mantélicas semelhantes, devendo-se levar em conta para futuras pesquisas, a possibilidade da proximidade das respectivas idades de intrusão. As características geológicas do enxame de diabásio II sugere idade Mesozoica, uma vez que cortam unidades paleozóicas. Os dados geológicos e geoquímicos indicam ambiente intracratônico para ambos os enxames / Two types of mafic dykes occur in the central eastern portion of Rondônia State, In the SW Amazonian Craton. They are located at the interface between two geochronological provinces and distinct tectonic terrains (Rio Negro Juruena and Sunsas Aguapei Provinces, and Jamari Terrain and Nova Brasilandia Terrain, respectively) and are separated by the Pimento Bueno Paleozoic graben. They are named diabase I and diabase II. Diabase I trends predominantly WNW-ESE, and subordinately NW-SE, and crosscut Proterozoic rocks from Migrantopolis and Terra Boa Formations and from the Intrusive Suite of Serra da Providência. Diabase II is more widespread in the region and trends mainly N-S and NNE-SSW, and subordinately WSW-ESE. This swarm crosscuts both Proterozoic (Migrantinópolis and Terra Boa Formations), and Paleozoic rocks (Pedra Redonda and Pimenta Bueno Formations). The main petrographic differences refers to the presence of orthopyroxene only in the diabase II samples, and different textures, predominately equigranular in diabase II, and frequently porphyritic and microporphyritic in diabase I. Geochemically both types are classified as tholeiitic basalts. Diabase I (mg# 0.35-0.71) is more enriched in FeO, TiO2, K2O, P2O5 and in incompatible elements in comparison with diabase II (mg# 0.40-0.60). The difference between enrichment degree of both melts and the clear distinction between incompatible element ratios indicate that diabase I and diabase II originate from different progenitor mantles. The great similarity between the means and ranges of incompatible element ratios of diabase I dykes, Rb/Sr (0.03-0.39), K/Nb (197.42 – 1273.92), La/Nb (0.73 – 3.55), P/Nb (42.54 – 272.13), Ce/Zr (0.21 – 0.41), Ce/Yb (11.12 – 21.22), La/Yb (4.91 – 9.56), Zr/Th (61.05 – 140.54), Nb/Hf (1.34 – 7.48), Ce/Ta (36.20 – 199.65), Ba/Sr (0.65 – 2.15), Zr/Ti (75.85 – 203.08), Zr/Y (3.70 – 6.17) and metagabbros from the Nova Brasilândia Group (1.10 Ga), Rb/Sr (0.05-0.26), K/Nb (340.35 – 1304.49), La/Nb (1.68 – 3.23), P/Nb (74.20 – 264.74), Ce/Zr (0.19 – 0.67), Ce/Yb (7.04 – 57.85), La/Yb (2.86 – 25.23), Zr/Th (19.91 – 162.34), Nb/Hf (1.05 – 10.52), Ce/Ta (66.74 – 134.23), Ba/Sr (0.71 – 3.21), Zr/Ti (109.74 – 261.71), Zr/Y (2.96 – 6.16) suggest that both melts originate from similar sources, and forthcoming researches should take into account the possibility of similar intrusion ages. The geological setting of the diabase II swarm suggests that these intrusions could be Mesozoic, since intrude in Paleozoic units. Geologic and geochemical data indicate an intracontinental setting for both swarms
|
24 |
Petrologia e geocronologia do complexo máfico-ultramáfico trincheira, sudoeste do cráton amazônico: implicações tectônicas do mesoproterozóicoRizzotto, Gilmar Jose January 2012 (has links)
A ambiência geotectônica das rochas máfico-ultramáficas do sudoeste do Cráton Amazônico é, de uma maneira geral, pouco conhecida. A maioria dos trabalhos desta porção cratônica está enfocada nos estudos geocronológicos em granitóides, de modo que pouco se sabe sobre a origem e significado tectônico destas rochas. Neste contexto, esta pesquisa buscou contribuir para o conhecimento da evolução geotectônica do sudoeste do Cráton Amazônico, através da caracterização de um complexo ofiolítico Mesoproterozóico, correspondente ao Complexo Trincheira, de idade Calimiana. Desta forma, uma nova proposta de modelo tectônico é aqui apresentada, a qual explica muitas das características anteriormente enigmáticas da história Pré-cambriana desta área-chave e possibilita outras alternativas para a reconstrução do supercontinente Columbia. O ofiolito Trincheira é composto de rochas extrusivas (anfibolitos derivados de basaltos maciços e almofadados), intrusivas máfico-ultramáficas, chert, formação ferrífera bandada, pelitos, psamitos e pequena proporção de rochas cálcio-silicáticas. A composição geoquímica das rochas extrusivas e intrusivas máfico-ultramáficas mostra semelhanças com os basaltos toleiíticos modernos, as quais possuem moderado a forte fracionamento de elementos terras-raras leves, padrão quase horizontal dos elementos terras-raras pesados e moderada a forte anomalia negativa dos elementos de alto campo de força (especialmente Nb), uma assinatura geoquímica típica de zona de subducção. As unidades basais do ofiolito Trincheira são quimicamente similares aos modernos basaltos de cadeia meso-oceânica (MORB). Esse comportamento químico muda para as unidades de topo as quais apresentam uma assinatura similar aos toleiítos de arco-de- ilha (IAT). Portanto, o ofiolito Trincheira deve ter sido originado em um ambiente intra-oceânico de supra-subducção composto de um sistema de arco/retro-arco. Os dados isotópicos de Sm, Nd e Sr para essas rochas indicam valores iniciais de Nd de moderados a altamente positivos (+2.6 a +8.8) e muito baixa razão inicial de 87Sr/86Sr (0,7013 – 0,7033), sugerindo que esses magmas foram originados a partir de uma fonte mantélica empobrecida e nada ou fracamente contaminados por componentes de subducção. O complexo ofiolítico foi deformado, metassomatizado e metamorfisado durante o desenvolvimento da Faixa Móvel Guaporé, um orógeno acrescionário-colisional Mesoproterozóico (1,47-1,35 Ba), constituído pela zona de sutura Guaporé, a qual une o Cráton Amazônico com o Bloco Paraguá. A fase colisional que marca o encaixe final dessas duas massas continentais ocorreu por volta de 1,35 Ba, onde o metamorfismo atingiu temperaturas entre 780 a 853°C nos granulitos máficos e 680 a 720°C nos anfibolitos, com pressão média de 6,8 kbar. A sutura Guaporé foi reativada no final do Mesoproterozóico e evoluiu para a abertura de um rift intracontinental, com a sedimentação das rochas dos Grupos Nova Brasilândia e Aguapeí, o qual marca a fragmentação final do supercontinente Columbia, por volta de 1,3-1,2 Ba. Granulitos máficos, anfibolitos e trondhjemitos da porção meridional do Cinturão Nova Brasilândia, representativos da última fase compressional que afetou o sudoeste do Cráton Amazônico, forneceram idades U-Pb de 1110 Ma, as quais datam o metamorfismo de alto grau e o fechamento do rift, processo resultante da acresção do microcontinente Arequipa-Antofalla ao Cráton Amazônico. Portanto, a fragmentação do supercontinente Columbia foi seguida rapidamente pela aglomeração de outras massas continentais, formando o supercontinente Rodínia, por volta de 1100 Ma. / The tectonic framework of the ultramafic-mafic rocks of the southwestern Amazon Craton is generally little known. Most of work this cratonic portion is focused on the geochronological studies of granitoids, so that little is known about the origin and tectonic significance of these rocks. In this context, this study contributes to the knowledge of the tectonic evolution of the southwestern Amazon Craton, through the characterization of a Mesoproterozoic ophiolitic complex, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation, pelites, psammitic and a smaller proportion of calc-silicate rocks. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. These rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB). This behavior changes to an island arc tholeiites (IAT) signature in the upper units of the Trincheira ophiolite. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Mafic-ultramafic rocks of the Trincheira ophiolites display moderate to highly positive initial Nd values of +2.6 to +8.8 and very low values for the initial 87Sr/86Sr ratio (0.7013 - 0.7033). It is suggested that these magmas originated from a depleted mantle source, which experienced low degree of contamination by variable subduction components. The ophiolitic sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary-collisional orogen that represents the Guaporé suture zone. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The Guaporé suture zone is defined by the ESE–WNW trending mafic-ultramafic belt formed during a Mesoproterozoic (ca. 1.47-1.43 Ga) accretionary phase, and overprinted by upper amphibolite-granulite facies metamorphism during collisional phase in the Ectasian (~1.35 Ga), which mark the docking final of the Amazon craton and Paraguá Block. This suture was reactivated and evolved from the development of an intracontinental rift environment, represented by Nova Brasilândia and Aguapeí Groups, which mark the final breakup of the supercontinent Columbia in the late Mesoproterozoic (ca. 1.3-1.2 Ga). Mafic granulites, amphibolites and trondhjemites in the northernmost portion of the Nova Brasilândia belt yield U-Pb zircon ages ca. 1110 Ma, which dates the high-grade metamorphism and the closure of the rift, due to the accretion of the Arequipa-Antofalla basement to the Amazon craton. Therefore, the breakup of supercontinent Columbia was followed in short sequence by the assembly of supercontinent Rodinia at ca. 1100 Ma.
|
25 |
Petrologia e geocronologia do complexo máfico-ultramáfico trincheira, sudoeste do cráton amazônico: implicações tectônicas do mesoproterozóicoRizzotto, Gilmar Jose January 2012 (has links)
A ambiência geotectônica das rochas máfico-ultramáficas do sudoeste do Cráton Amazônico é, de uma maneira geral, pouco conhecida. A maioria dos trabalhos desta porção cratônica está enfocada nos estudos geocronológicos em granitóides, de modo que pouco se sabe sobre a origem e significado tectônico destas rochas. Neste contexto, esta pesquisa buscou contribuir para o conhecimento da evolução geotectônica do sudoeste do Cráton Amazônico, através da caracterização de um complexo ofiolítico Mesoproterozóico, correspondente ao Complexo Trincheira, de idade Calimiana. Desta forma, uma nova proposta de modelo tectônico é aqui apresentada, a qual explica muitas das características anteriormente enigmáticas da história Pré-cambriana desta área-chave e possibilita outras alternativas para a reconstrução do supercontinente Columbia. O ofiolito Trincheira é composto de rochas extrusivas (anfibolitos derivados de basaltos maciços e almofadados), intrusivas máfico-ultramáficas, chert, formação ferrífera bandada, pelitos, psamitos e pequena proporção de rochas cálcio-silicáticas. A composição geoquímica das rochas extrusivas e intrusivas máfico-ultramáficas mostra semelhanças com os basaltos toleiíticos modernos, as quais possuem moderado a forte fracionamento de elementos terras-raras leves, padrão quase horizontal dos elementos terras-raras pesados e moderada a forte anomalia negativa dos elementos de alto campo de força (especialmente Nb), uma assinatura geoquímica típica de zona de subducção. As unidades basais do ofiolito Trincheira são quimicamente similares aos modernos basaltos de cadeia meso-oceânica (MORB). Esse comportamento químico muda para as unidades de topo as quais apresentam uma assinatura similar aos toleiítos de arco-de- ilha (IAT). Portanto, o ofiolito Trincheira deve ter sido originado em um ambiente intra-oceânico de supra-subducção composto de um sistema de arco/retro-arco. Os dados isotópicos de Sm, Nd e Sr para essas rochas indicam valores iniciais de Nd de moderados a altamente positivos (+2.6 a +8.8) e muito baixa razão inicial de 87Sr/86Sr (0,7013 – 0,7033), sugerindo que esses magmas foram originados a partir de uma fonte mantélica empobrecida e nada ou fracamente contaminados por componentes de subducção. O complexo ofiolítico foi deformado, metassomatizado e metamorfisado durante o desenvolvimento da Faixa Móvel Guaporé, um orógeno acrescionário-colisional Mesoproterozóico (1,47-1,35 Ba), constituído pela zona de sutura Guaporé, a qual une o Cráton Amazônico com o Bloco Paraguá. A fase colisional que marca o encaixe final dessas duas massas continentais ocorreu por volta de 1,35 Ba, onde o metamorfismo atingiu temperaturas entre 780 a 853°C nos granulitos máficos e 680 a 720°C nos anfibolitos, com pressão média de 6,8 kbar. A sutura Guaporé foi reativada no final do Mesoproterozóico e evoluiu para a abertura de um rift intracontinental, com a sedimentação das rochas dos Grupos Nova Brasilândia e Aguapeí, o qual marca a fragmentação final do supercontinente Columbia, por volta de 1,3-1,2 Ba. Granulitos máficos, anfibolitos e trondhjemitos da porção meridional do Cinturão Nova Brasilândia, representativos da última fase compressional que afetou o sudoeste do Cráton Amazônico, forneceram idades U-Pb de 1110 Ma, as quais datam o metamorfismo de alto grau e o fechamento do rift, processo resultante da acresção do microcontinente Arequipa-Antofalla ao Cráton Amazônico. Portanto, a fragmentação do supercontinente Columbia foi seguida rapidamente pela aglomeração de outras massas continentais, formando o supercontinente Rodínia, por volta de 1100 Ma. / The tectonic framework of the ultramafic-mafic rocks of the southwestern Amazon Craton is generally little known. Most of work this cratonic portion is focused on the geochronological studies of granitoids, so that little is known about the origin and tectonic significance of these rocks. In this context, this study contributes to the knowledge of the tectonic evolution of the southwestern Amazon Craton, through the characterization of a Mesoproterozoic ophiolitic complex, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation, pelites, psammitic and a smaller proportion of calc-silicate rocks. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. These rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB). This behavior changes to an island arc tholeiites (IAT) signature in the upper units of the Trincheira ophiolite. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Mafic-ultramafic rocks of the Trincheira ophiolites display moderate to highly positive initial Nd values of +2.6 to +8.8 and very low values for the initial 87Sr/86Sr ratio (0.7013 - 0.7033). It is suggested that these magmas originated from a depleted mantle source, which experienced low degree of contamination by variable subduction components. The ophiolitic sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary-collisional orogen that represents the Guaporé suture zone. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The Guaporé suture zone is defined by the ESE–WNW trending mafic-ultramafic belt formed during a Mesoproterozoic (ca. 1.47-1.43 Ga) accretionary phase, and overprinted by upper amphibolite-granulite facies metamorphism during collisional phase in the Ectasian (~1.35 Ga), which mark the docking final of the Amazon craton and Paraguá Block. This suture was reactivated and evolved from the development of an intracontinental rift environment, represented by Nova Brasilândia and Aguapeí Groups, which mark the final breakup of the supercontinent Columbia in the late Mesoproterozoic (ca. 1.3-1.2 Ga). Mafic granulites, amphibolites and trondhjemites in the northernmost portion of the Nova Brasilândia belt yield U-Pb zircon ages ca. 1110 Ma, which dates the high-grade metamorphism and the closure of the rift, due to the accretion of the Arequipa-Antofalla basement to the Amazon craton. Therefore, the breakup of supercontinent Columbia was followed in short sequence by the assembly of supercontinent Rodinia at ca. 1100 Ma.
|
26 |
Samband mellan berggrund och vegetation : Grönstensområden och skyddad naturKarlsson, Anna January 2018 (has links)
Mafic bedrock being beneficial to vegetation is a relationship that is being mentioned in different kinds of nature related litterature. This relationship is however not always explained and other factors may be as important as, or even more influential than, the bedrock content. In this study the relationship between mafic rock and protected areas of nature is being examined, based on the following questions. - How does geology, with respect to bedrock content and weathering, create benign conditions for vegetation? - To what extent is the environment on mafic bedrock, or in its proximity, often judged as worth protecting? The theoretical basis for the study is soil formation regarding parent material, based on Jenny´s formula, and weathering according to the Goldich dissolution series. The method used is a comparison between maps showing bedrock and maps showing areas with protected nature. The protected areas are considered as connected to the mafic bedrock if they are within the mafic area, or up to 2 km from the mafic area in the direction of the ice movement during the last ice age (Weichsel) in Sweden. The mainland of the municipality of Oskarshamn, on the southeast coast of Sweden, is used for a case study. The bedrock in this area is mainly felsic, with some minor areas being mafic. The result shows a higher degree of protected nature, for the types “naturreservat” and ”Natura 2000”, on mafic bedrock, or in the vicinity of the mafic area, than for felsic bedrock. The result for Oskarshamn is compared to mafic bedrock areas around Åseda and Fagerhult and to the limestone area around Vintrosa. For all of these three cases there are areas of protected environment, within or in the vicinity of the studied bedrock areas. Although there seems to be a relationship between mafic bedrock and protected nature, other factors need to be considered as well. The influence of topography, access to water, local climate and e.g. the particle size of the soil, may contribute considerably to the content and distribution of the vegetation at a specific place.
|
27 |
Magmatisme mafique et minéralisations Sb-Au dans le domaine Centre Armoricain : contrôles spatio-temporels et implications metallogéniques / Mafic magmatism and Sb-Au mineralisation in the Central Armorican domain : spatiotemporal controls and metallogenic implicationsPochon, Anthony 18 December 2017 (has links)
Au sein de la croûte terrestre, une grande partie des processus de mobilisation et redistribution des métaux résulte de circulations de fluides à grande échelle. Par conséquent, c’est un paramètre clé dans la formation de nombreux types de gisements variés. Les zones de déformation étant les vecteurs principaux des circulations de fluides, la plupart des gisements d’or (Au) et d’antimoine (Sb) se retrouvent localisés au sein des ceintures orogéniques. Le Massif Armoricain constitue un segment de la chaîne varisque ouest-européenne et contient de nombreux gisements à Sb-Au. L’objectif de cette thèse est à la fois de fournir de nouvelles contraintes sur la genèse des minéralisations varisques à Sb-Au et d’améliorer l’état des connaissances sur les processus critiques à l’origine des circulations de fluides minéralisatrices. Ainsi, une analyse des relations spatiales et des analyses structurales, géochronologiques et géochimiques ont été réalisées sur les gisements à Sb-Au du Domaine Centre Armoricain (DCA) et sur le gisement du Semnon en particulier. Une grande partie des gisements à Sb-Au est spatialement associée à des zones denses et relativement magnétiques suggérant la présence de corps mafiques/ultramafiques en profondeur. Cela est supporté par les nombreuses occurrences de dykes et sills de dolérites à travers toute la région. Ces dykes et sills sont issus d’un important évènement magmatique mafique mis en place à 360 Ma durant un changement drastique de la dynamique de convergence, passant de la subduction continentale à l’initiation de la collision. Les minéralisations à Sb-Au du DCA sont précoces dans l’histoire Carbonifère de la chaîne varisque armoricaine. Par conséquent, la plupart des minéralisations du DCA ne sont pas associées à l’évènement hydrothermal minéralisateur tardi-Carbonifère, bien connu dans la chaîne varisque européenne, en particulier au sein des zones internes de la chaîne tel que le Massif Central français. Au-delà du fait que cet évènement hydrothemal à Sb-Au soit précoce, la mise en place d’un magmatisme mafique généralisé dans la croûte supérieure du DCA est synchrone avec les minéralisations à Sb-Au et apparait comme un paramètre essentiel dans la mobilisation de circulations de fluides minéralisateurs advectifs. A plus grande échelle, la mise en place d’un magmatisme mafique couplée à la circulation de fluides hydrothermaux à Sb-Au met en lumière et améliore nos connaissances sur les processus hydrothermaux, magmatiques et tectoniques d’échelle lithosphérique gouvernant l’hydrothermalisme porteur de métaux. Par conséquent, ces résultats ouvrent de nouvelles perspectives pour l’exploration minière, notamment dans la recherche de nouveaux gisements d'antimoine et d'or au sein de la chaîne varisque européenne. / Through the Earth’s crust, a major part of the mobilization and the redistribution processes of metals are the result of large-scale fluid flows. Consequently, it is a key factor in the formation of various types of mineral deposits. Because deformation zones are the principal vector for fluid flows, most hydrothermal antimony (Sb) and gold (Au) deposits are localized in orogenic deformed belts. As a western part of the European Variscan belt, the Armorican Massif hosts several Sb-Au deposits. The purpose of this work is to provide new constraints on the genesis of these Variscan Sb-Au mineralization and to improve our knowledge about critical processes for hydrothermal mineralizing fluid flows. For these reasons, spatial relationships, structural, geochemical and geochronological investigations were performed on the Sb-Au deposits from the Central Armorican Domain (CAD), the Le Semnon Sb-Au deposit in particular. A major part of Sb-Au deposits are spatially associated with high-density and magnetic zones reflecting the presence of mafic/ultramafic bodies at depth and that is supported by numerous occurrences of dolerite dykes and sills throughout the region. These dykes and sills are issued from an important mafic magmatic event at ca. 360 Ma emplaced during a plate dynamic shift from continental subduction to incipient collision stage. Sb-Au mineralization from the CAD belongs to the early Carboniferous history within the Variscan framework. Consequently, most of Sb-Au mineralization (at least in the CAD) is not related to the Late Carboniferous hydrothermal mineralizing event, well-identified in the Variscan southernmost internal zones and especially in the French Massif Central. Beyond that early hydrothermal event, the widespread emplacement of a mafic magmatism in the CAD upper crust is coeval with Sb-Au mineralization and appears as a major trigger for highly advective mineralizing fluid flows. At a larger scale, mafic magmatism emplacement coupled with early Carboniferous Sb-Au hydrothermal fluid flows highlights and improves our knowledge of lithospheric-scale tectonics, magmatic and hydrothermal processes governing such metal-bearing hydrothermalism. As a consequence, those results provide a new framework for future mining exploration of antimony and gold deposits in the European Variscan belt.
|
28 |
Alteration assemblage in the lower units of the Uitkomst Complex, Mpumalanga Province, South AfricaSteenkamp, Nicolaas Casper 03 September 2012 (has links)
The Uitkomst Complex is located within the Great Escarpment area close to the town of Badplaas, approximately 300 km due east of Pretoria, in the Mpumalanga Province, South Africa. This complex is believed to represent a layered conduit system related to the 2.06 Ga Bushveld Complex. The succession from the bottom up comprises the Basal Gabbro- (BGAB), Lower Harzburgite- (LHZBG) and Chromitiferous Harzburgite (PCR) Units, collectively referred to as the Basal Units, followed by the Main Harzburgite- (MHZBG), Upper Pyroxenite-(PXT) and Gabbronorite (GN) Units, collectively referred to as the Main Units. The Basal Unit is largely hosted by the Malmani Dolomite Formation, in the Pretoria Group of the Transvaal Supergroup sediments. The Lower Harzburgite Unit contains numerous calc-silicate xenoliths derived from the Malmani Dolomite. The Basal Units host the economically important nickel-bearing sulphide and chromite deposits exploited by the Nkomati Mine. An area of extensive localized talc-chlorite alteration is found in the area delineated for large scale open cast mining. This phenomenon has bearing on the nature and distribution of the sulphide minerals in the Chromitiferous Harzburgite and to a lesser extent the Lower Harzburgite Units. The Basal Unit is comprised of both near pristine areas of mafic minerals and areas of extensive secondary replacement minerals. Of the olivine minerals, only fosterite of magmatic origin is found, the fosterite suffered hydrothermal alteration resulting in replacement of it by serpentine and secondary magnetite. Three different types of diopside are found, the first is a primary magamatic phase, the second is a hybrid “transitional” phase and the third, a skarn phase. Hydrothermal alteration of the matrix diopside led to the formation of actinolite-tremolite pseudomorphs. This secondary tremolite is intergrown with the nickeliferous sulphide grains. Chromite grains are rimmed or replaced by secondary magnetite. Pyrrhotite grains is also rimmed or replaced by secondary magnetite. Talc and chlorite is concentrated in the highly altered rocks, dominating the PCR unit. Primary plagioclase and calcite do not appear to have suffered alteration to the same extent as the other precursor mafic magmatic and hydrothermal minerals. It is suggested that the PCR was the first unit to be emplaced near the contact of the dolomite and shale host rock. The more primitive mafic mineral composition and presence of chromitite attest to this interpretation. The LHZBG and MHZBG units may have been emplaced simultaneously, the LHZBG below and the MHZBG above. Interaction and partial assimilation of the dolomitic country rock led to a disruption of the primary mafic mineralogy, resulting in the preferential formation of diopside at the expense of orthopyroxene and plagioclase. Addition of country rock sulphur resulted in sulphur saturation of the magma and resulted in the observed mineralization. The downward stoping of the LHZBG magma, in a more “passive” pulse-like manner led to the formation of the calc-silicate xenolith lower third of this unit. It is proposed that the interaction with, and assimilation of the dolomitic host rock by the intruding ultramafic magmas of the Basal Units are responsible, firstly, for the segregation of the nickeliferous sulphides from the magma, and secondly for the formation of a carbonate-rich deuteric fluid that affected the primary magmatic mineralogy of the Basal Unit rocks. The fluids released during the assimilation and recrystallization of the dolomites also led to the serpentinization of the xenoliths themselves and probably the surrounding hybrid and mafic- ultramafic host rocks. The CO2-rich fluids migrated up and outward, while the H2O-rich fluids remained confined to the area around the xenoliths and LHZBG unit. The H2O-rich fluid is thought to be responsible for the retrograde metamorphism of the precursor magmatic and metamorphic minerals in the Lower Harzburgite Unit. The formation of an exoscarn within the dolomitic country rocks and a selvage of endoskarn on the contact form an effective solidification front that prevented further contamination of the magma. It is also suggested that these solidification fronts constrained the lateral extent of the conduit. The CO2-enriched deutric fluid was able to migrate up to the PCR unit. Here the fluid was not removed as effectively as in the underlying parts of the developing conduit. This resulted in higher CO2-partial pressures in the PCR unit, and the stabilization of talccarbonate assemblages that extensively replaced the precursor magmatic mineralogy. Intrusion of the magma into the shales, which may have been more susceptible to assimilation and greater stoping, led to a broadening in the lateral extent of the Complex, in the Main units above the trough-like feature occupied by the Basal Units. Late-stage, hydrous dominated fluid migration is inferred to have been constrained to the central part of the conduit. This is demonstrated by the dominance of chlorite in the central part of the Uitkomst Complex in the study area. The Uitkomst Complex was further deformed by later intrusions of dolerite dykes. Weathering of the escarpment led to exposure of the conduit as a valley and oxidation of the surficial exposed rocks. / Thesis (PhD)--University of Pretoria, 2012. / Geology / unrestricted
|
29 |
The geology of the Mozambique belt and the Zimbabwe craton around Manica, Western MozambiqueManhica, Antonio dos Santos Tcheco 20 October 2012 (has links)
The study area comprises the Archaean Manica Greenstone Belt and the Vumba Granite Gneiss, the Proterozoic Messica Granite Gneiss of the Zimbabwe Craton, the possibly allochthonous metasedimentary sequence of the Frontier Formation, the granitoids of the Mozambique Metamorphic Province, which are subdivided into Vanduzi Migmatite Gneiss, the Chimoio Granodiorite Gneiss, the Nhansipfe Granitic Orthogneiss and the Pan-African Tchinhadzandze Granodiorite Gneiss. The rock sequences in the two provinces are cut by mafic intrusions. The greenstone belt comprises mafic to ultramafic and pelitic schists and serpentinites of the Macequece Formation and metasediments ofthe M'BezaNengo Formation. The mafic to ultramafic schists and the serpentinites have chemical signatures of komatiites. The Vumba Granite Gneiss comprises the northern and southern Vumba granitoids dated at 3885±255 Ma, and 2527±632 Ma respectively. They vary from metaluminous to peraluminous, have normative QAP compositions of granodiorites and monzogranites and chemical signatures of mantle fractionates and volcanic-arc granitoids. The Early Proterozoic Messica Granite Gneiss is 2348±267 Ma old, is metaluminous and has QAP compositions of monzogranites and chemical signatures suggesting a crustal source and a volcanic-arc environment. The Frontier Formation comprises quartzite and pelitic schists. The Vanduzi Migmatite Gneiss comprises stromatic and stictolithic types. Two mineral assemblages are distinguished as they contain either garnet or hornblende. The Mid-Proterozoic Chimoio Granodioritic Gneiss is 1236±201 Ma old. It is granodioritic and metaluminous with a chemical signature of volcanic-arc granitoids. The Late Proterozoic Nhansipfe Granitic Orthogneiss is dated at 981 ±83 Ma and varies from metaluminous to peraluminous. The Rb, Nb and Y contents are typical of within-plate granitoids, whereas Ga, Zr, AI, Ce andY are typical of A-type granitoids. The age of the mafic intrusions falls between ~500 and ~11 00 Ma. The rocks typically contain plagioclase, hornblende and clinopyroxene with or without garnet and orthopyroxene. The chemistry of the rocks is typical of sub-alkaline tholeiites. The Tchinhadzandze Granodiorite Gneiss may be part of a Pan African event which lasted till ~450-~500 Ma. The normative feldspar compositions and Rb, Ba and Sr contents are typical of granodiorites. It is metaluminous and has Rb, Y and Nb contents typical of volcanic arc granitoids. The planar fabrics in the Archaean granite-greenstone belt are characterized by E-W to SW-NE strikes and steep dips to N and S and to NW and SE. The mineral lineations and fold axes plunge 60° and 30° respectively towards the E. Within the Mozambique belt, around the central part and in the extreme east of the study area, the planar fabrics have essentially N-S strikes and steep dips to E and Win contrast with complex deformation observed in the migmatites and megacrystic granitoids. The study area can be subdivided into three metamorphic blocks, namely, one of low-grade greenschist facies, one of medium-grade amphibolite facies and a third block of high-grade metamorphism. / Dissertation (MSc)--University of Pretoria, 2012. / Geology / unrestricted
|
30 |
Mafické a intermediální intruze jako průvodci peraluminických granitů krušnohorského batolitu / Mafic and intermediate intrusions accompanying peraluminious granites of the Krušné hory Mts.batholitHolečková, Pavla January 2012 (has links)
Mafic and intermediate intrusions commonly accompany Variscan granitoid plutons in Europe. They are documented from different localities of Iberian Peninsula, from the French Massif Central, Schwarzwald, from different parts of the Bohemian Massif, in Romania, Greece, Corsica and Sardinia. They comprise wide petrographic varieties from quartz gabbros, diorites, granodiorites to monzonites. They usually constitute small bodies or veins, they often occur as mafic microgranular enclaves (MME) in granodiorites and in some granites. Dioritic intrusions are characterized by a relatively high amounts of lithophile elements (Rb, Sr, Ba, Cs, LREE), and they are simultaneously high in compatible elements (Ni, Cr, V a Co). Their isotopic ratios 87 Sr/86 Sr are in all compared locations similar and are close to the Bulk Earth (0.704 - 0.708). εNd values show larger scatter, some intrusions have more crustal composition (to -8), on the other hand, another intrusions have εNd positive, that points to a contribution of basic magma. The age of dioritic intrusions differs according to individual locality suggesting more than one magmatic episode. The oldest occur in the French Massif Central (361 - 365 Ma), whereas the youngest are documented in Iberia (312 - 310 Ma). The oldest mafic intrusions in the Bohemian...
|
Page generated in 0.0253 seconds