• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Attitude Determination and Control System of the Generic Nanosatellite Bus

Greene, Michael R. 16 February 2010 (has links)
The Generic Nanosatellite Bus (GNB) is a spacecraft platform designed to accommodate the integration of diverse payloads in a common housing of supporting components. The development of the GNB at the Space Flight Laboratory (SFL) under the Canadian Advanced Nanospace eXperiment (CanX) program provides accelerated access to space while reducing non-recurring engineering (NRE) costs. The work presented herein details the development of the attitude determination and control subsystem (ADCS) of the GNB. Specific work on magnetorquer coil assembly, integration, and testing (AIT) and reaction wheel testing is included. The embedded software development and unit-level testing of the GNB sun sensors are discussed. The characterization of the AeroAstro star tracker is also a major focus, with procedures and results presented here. Hardware models were developed and incorporated into SFL's in-house high-fidelity attitude dynamics and control simulation environment. This work focuses on specific contributions to the CanX-3, CanX-4&5, and AISSat-1 nanosatellite missions.
2

The Attitude Determination and Control System of the Generic Nanosatellite Bus

Greene, Michael R. 16 February 2010 (has links)
The Generic Nanosatellite Bus (GNB) is a spacecraft platform designed to accommodate the integration of diverse payloads in a common housing of supporting components. The development of the GNB at the Space Flight Laboratory (SFL) under the Canadian Advanced Nanospace eXperiment (CanX) program provides accelerated access to space while reducing non-recurring engineering (NRE) costs. The work presented herein details the development of the attitude determination and control subsystem (ADCS) of the GNB. Specific work on magnetorquer coil assembly, integration, and testing (AIT) and reaction wheel testing is included. The embedded software development and unit-level testing of the GNB sun sensors are discussed. The characterization of the AeroAstro star tracker is also a major focus, with procedures and results presented here. Hardware models were developed and incorporated into SFL's in-house high-fidelity attitude dynamics and control simulation environment. This work focuses on specific contributions to the CanX-3, CanX-4&5, and AISSat-1 nanosatellite missions.
3

Development Of Control Allocation Methods For Satellite Attitude Control

Elmas, Tuba Cigdem 01 February 2010 (has links) (PDF)
This thesis addresses the attitude control of satellites with similar and dissimilar actuators and control allocation methods on maneuvering. In addition, the control moment gyro (CMG) steering with gyroscopes having limited gimbal angle travel is also addressed. Full Momentum envelopes for a cluster of four CMG&#039 / s are obtained in a pyramid type mounting arrangement. The envelopes when gimbal travel is limited to plus-minus 90 degree are also obtained. The steering simulations using Moore Penrose (MP) pseudo inverse as well as blended inverse are presented and success of the pre planned blended inverse steering in avoiding gimbal angle limits is demonstrated through satellite slew maneuver simulations, showing the completion of the maneuver without violating gimbal angle travel restrictions. Dissimilar actuators, CMG and magnetic torquers are used as an approach of overactuated system. Steering simulations are carried out using different steering laws for constant torque and desired satellite slew maneuver scenarios. Success of the blended inverse steering algorithm over MP pseudo inverse is also demonstrated

Page generated in 0.0422 seconds