121 |
Tomographic Studies of Pulsar Radio Emission Cones and Searches for Radio Counterparts of Gamma-Ray PulsarsMaan, Yogesh January 2013 (has links) (PDF)
Radio emission from pulsars is believed to originate from charged particles streaming along the open magnetic field lines, radiating within a narrow cone at each of the two magnetic poles. In each rotation of the star, the emission beam sweeping across the observer’s line of sight, is seen as a pulse of radio emission. Average pulse profiles integrated over several hundreds of individual pulses, along with polarization information, reveal the viewing geometry and various emission properties(e.g., emission in multiple cones, frequency dependence of the emission altitude, notches in the average profiles, etc.), and provide some clues about the possible emission mechanisms. The sequence of individual pulses generally exhibit richer details, e.g., pulse-nulling, variety of subpulse drifting, polarization mode-changing, micro-structure and giant pulse emission, etc., and seem to be more crucial and promising in probing the underlying physical processes. The physical understanding of many of the above properties and phenomena is still far from complete. In first two parts of this thesis, we address a few of these aspects, and probe related details by mapping the pulsar polar emission patterns, while in the last part, we present our searches for dispersed signals(periodic as well as transient) at very low frequencies. More specifically, Part-I makes use of the present understanding of drifting subpulses phenomenon to reconstruct the emission patterns in nearly complete polar cap region of the pulsar B1237+25, and addresses the origin of emission in multiple cones using these reconstructed emission maps. In Part-II, we discuss a need for new instrumentation primarily motivated by the need for tomographic studies of pulsar polar emission regions. We report the consequent design and development of a novel, self-contained multi-band receiver (MBR)system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span(100–1500MHz) in a nearly log-periodic fashion. Part-III presents our deep searches designed to detect radio transient as well as periodic signals from the (so far) “radio-quiet” gamma-ray pulsars — a population of radio silent pulsars recently discovered using the Large Area Telescope on the Fermi-satellite. Brief descriptions of the issues addressed in the three parts of the thesis, along with a summary of respective results, is as follows.
1. Origin of Radio Emission in Multiple Cones
Many pulsars exhibit systematic variations in position and intensity of their subpulses, a phenomenon now well known as “subpulse drifting”. Ruderman & Sutherland(1975) suggested this regular modulation to be a manifestation of a carousel of “spark” discharges in the acceleration zone of the star, circulating around the magnetic axis because of the E×B drift. In the qualitative framework of the above carousel model, the coherent modulation in a subpulse sequence can be mapped back to the underlying pattern of sub-beams/emission-columns (see, for example, Deshpande & Rankin, 1999). However, the completeness with which the underlying configuration of sub-beams can be sampled depends on how close our line of sight approaches the magnetic axis. The bright pulsar B1237+25 has a special viewing geometry where the sightline traverses almost through the magnetic axis, thus providing an excellent opportunity to map and study the underlying patterns across the full transverse slice of its polar emission region. However, the rich variety in pulse-to-pulse fluctuations in this pulsar makes this task challenging. In Chapter 2, we present our analysis of a number of pulse-sequences from this star observed with the Arecibo telescope, wherein we search for, and use, coherent modulation in sub-sequences, to map the underlying emission patterns. The reconstructed maps provide a convenient way to study the details in multiple emission cones, and any inter-relationship between them. More specifically, we have utilized these maps to explore whether the multiple cones of this pulsar originate from a common seed pattern or not.
A summary of results
The results obtained from our study of B1237+25 are summarized below:
1 The underlying carousel of sparks for this pulsar appears to lack stability over long durations. The circulation period, deduced using smaller length sub-sequences, appears to vary over a large range(about18 to34 times the rotation period).
2. The emission patterns corresponding to the outer and the inner cones are found to be significantly correlated with each other, implying that the emission in the two cones share a common seed pattern of sparks. This main result is consistent with the same radio frequency emission in the two cones, originating from a common seed pattern of sparks at two different altitudes.
3 The emission patterns corresponding to the outer and the inner cones are found to be offset from each other, consistently across various sub-sequences, by about 10◦ in magnetic azimuth. This large offset indicates certainly a twist in the emission columns, and most likely in the magnetic field geometry, between the two different emission altitudes.
4. The core component also seems to share its origin with the conal counterparts. Presence of a compact, diffuse and further-in carousel of sub-beams is consistent with the observed modulation in the core component of this pulsar. The featureless spectrum observed for many core-single pulsars can be explained readily when the diffuse pattern approaches uniformity.
2.Tomography of the Pulsar Magnetosphere: Development of a Multi-band Receiver
Although drifting subpulses are now routinely interpreted in the qualitative framework of the carousel model, estimation of circulation time associated with the system of emission columns has been possible so far in only a handful of pulsars, and the important details determining such configurations, their evolution across the magnetosphere, and the pattern circulation are yet to be understood. Radius-to-frequency mapping in pulsars suggests that the lower frequency emission originates farther away from the surface of the star than the higher frequency emission. Hence, the sub-beam configuration mapped at a particular frequency provides a view of a single slice of the polar emission region at the corresponding emission altitude. Mapping of the underlying emission patterns simultaneously at a number of frequencies would amount to viewing a “tomograph” of the pulsar magnetosphere. Such tomographic studies would reveal not only the evolution of sub-beams across the magnetosphere but can also provide much needed clues about the generation of the sub-beam patterns, and their possible connection with the profile/polarization mode changes observed in various pulsars.
Simultaneous multi-frequency observations, which are required for many other interesting astronomical studies as well, are usually carried out by using several telescope, each observing at different frequency. Such an approach has inherent complexity in coordinating various telescopes, in addition to numerous other difficulties which limit the desired advantages of such observations. Some of these difficulties, which we faced in our attempt of carrying out simultaneous multi-frequency observations using five different telescopes, are discussed in Chapter 3. We suggest an optimum approach to carry out simultaneous multi-frequency observations, using a single large aperture. In Chapter 4, we present the design of a novel, “self-contained” multi-band receiver(MBR) system developed for this purpose. The MBR system includes a suitable feed, broadband front-end, parallel analog and digital receiver pipelines, along with appropriate monitoring, synchronization and data recording systems. When used with a large aperture, the MBR facilitates high time-resolution observations simultaneouslyin10discretefrequencybandssampling a wide spectral span(100–1500MHz) in a nearly log-periodic fashion. The raw voltage time sequences corresponding to each of the two linear polarization channels for each of the 10 spectral bands are simultaneously recorded, each sampling a bandwidth of 16 MHz at the Nyquist rate.
The dual-polarization multi-band feed, a key component of the MBR, is designed to have good responses only overthe10discretebandspre-selected as relatively RFI-free, and hence provides preliminary immunity against RFI. The MBR also offers significant tunability of the center frequencies of each of the 16-MHz sub-bands separately, within the spectral spans of respective bands. Similarity of the 10 sub-band receiver chains provides desired compatibility, in addition to an easy inter-changeability of these units, if required, and an overall modularity to the system.
The MBR was used with the 110 meter Green Bank Telescope to conduct test observations on a few bright continuum sources, and about 20 hours of observations on a number of bright pulsars. Using these observations, we have constructed a preliminary tomograph of the polar emission region of B0809+74, and studied the spectral evolution of emission altitudes and flux density ofB0329+54(Chapter5). Although the MBR system design is optimized for tomographic studies of pulsar polar emission regions, the simultaneous multi-frequency observations with such a system offer particular advantages in fast transient searches. The MBR is also suitable for several other astronomical investigations, e.g., studying the spectral evolution of average properties of pulsars and propagation effects, single-dish continuum studies and surveys/studies of recombination lines.
3. Searches for Decameter-wavelength Counterparts of Radio-quiet Gamma-ray Pulsars
Before the launch of the Fermi gamma-ray space telescope, the “radio-quiet” gamma-ray pulsar population consisted of only one pulsar ,i.e., Geminga (for example, see Bignami& Caraveo,1996; Abdo etal.,2009). High sensitivity of the Large Area Telescope(LAT) on the Fermi-satellite made it possible, for the first time, to perform blind searches for pulsars in γ-rays. Since the Fermi-operation started, the number of pulsars known to emit in γ-rays has seen an extraordinary increase — from less than 10 to 117 pulsars. About one-third of these pulsars have been discovered in blind searches of the LAT data. Despite deep radio searches, only 4 of these LAT-discovered pulsars could be detected, suggesting the rest of these to be “radio-quiet” gamma-ray pulsars.
One of the possible explanations for the apparent absence of radio emission from these pulsars is that their narrow radio beams miss the line of sight towards earth (Brazier & Johnston, 1999), and hence appear as “radio-quiet”. The radius-to-frequency mapping in radio pulsars suggests that the emission beam becomes wider at low frequencies, increasing the probability of our line of sight passing through the beam. However, all of the deep searches mentioned above were carried out at higher radio frequencies(∼1GHz and above, and some at300MHz,Ray etal.,2011;Pletsch etal.,2012),and the lower frequency domain(<≈100 MHz) has remained relatively unexplored. Given the expected widening of emission beam, follow-up searches of the radio-quiet pulsars at low radiofrequencies could also be revealing. With this view, we searched the archival data of the pulsar/transient survey at 34.5 MHz, carried out using the Gauribidanur telescope during 2002-2006,for any periodic or transient dispersed signal along the direction of many of the LAT-discovered pulsars. Motivated by an intriguing possible detection of the pulsar J1732−3131 from the above search, we carried out further extensive follow-up observations and deep searches for pulsed(periodic as well as transient) radio emission from a selected sample of radio-quiet pulsars. Chapters 6 and 7 present details of our observations, detection strategies and methodologies, and interesting results obtained in a few of the target directions. The results obtained from these searches include:
1 A possible detection of periodic radio pulses from J1732−3131 was made, using the archival data, at a dispersion measure(DM) of15.44 ±0.32 pc/cc. We also detected 10 individual bright pulses in the same observing session, although marginally above the detection threshold, at a DM consistent with that associated with the periodic signal. The apparent brightness of these single pulses, and similarity of their apparent distribution in pulse-longitude with that of giant pulses in J0218+4232, suggest that these might be giant pulses. Our DM-based distance estimate, using Cordes & Lazio electron density model(2002),matches well with earlier estimates based on gamma-ray emission efficiency.
2 In our follow-up deep searches, we could not detect any readily apparent pulsed radio signal(neither periodic nor single pulses) from J1732−3131, i.e., above a detection threshold of 8σ. However, when we time-aligned and co-added data from observing sessions at 21different epochs, and dedispersed using the DM estimated from the candidate detection, the average profile shape is found to be completely consistent with that from the candidate detection. Finding the same profile shape after 10 years of the original detection suggests that the signal is unlikely to be due to RFI or a mere manifestation of random noise.
3.In a couple of the observing sessions towards the telescope pointing direction of RA=06:34:30, DEC=10◦ , we detected a few ultra-bright pulses at two different DMs of about2pc/cc and3.3 pc/cc, respectively. However, when dedispersed at the DMs suggested by the bright single pulses, no significant signal was found at the expected periodicities of our targetpulsarsJ0633+0632 andJ0633+1746,which would be in the telescope beam centered at above coordinates. Energies of these strong pulses in the two observing sessions are comparable to typical energies of giant pulses from the Crab pulsar at decameter wavelengths.
4. No significant pulsed signal(periodic or transient), above a detection threshold of 8σ,was found towards the directions of other selected radio-quiet gamma-ray pulsars. Time-aligning and combining of observations at different epochs allowed us to carry out deep searches for signals at the expected periodicities of these pulsars. Despite the large background sky-temperature at decameter wavelengths, the minimum detectable flux density in our deep searches are comparable with those from previous searches at higher frequencies, when scaled using a spectral index of −2.0 and assuming no turn-over in the spectrum.
|
122 |
An artificial compressibility analogy approach for compressible ideal MHD: application to space weather simulationYalim, Mehmet S. 05 December 2008 (has links)
Ideal magnetohydrodynamics (MHD) simulations are known to have problems in satisfying the solenoidal constraint (i.e. the divergence of magnetic field should be equal to zero, $<p>ablacdotvec{B} = 0$). The simulations become unstable unless specific measures have been taken.<p><p>In this thesis, a solenoidal constraint satisfying technique that allows discrete satisfaction of the solenoidal constraint up to the machine accuracy is presented and validated with a variety of test cases. Due to its inspiration from Chorin's artificial compressibility method developed for incompressible CFD applications, the technique was named as \ / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
123 |
An artificial compressibility analogy approach for compressible ideal MHD: Application to space weather simulationYALIM, Mehmet Sarp 05 December 2008 (has links)
Ideal magnetohydrodynamics (MHD) simulations are known to have problems in satisfying the solenoidal constraint (i.e. the divergence of magnetic field should be equal to zero, $
ablacdotvec{B} = 0$). The simulations become unstable unless specific measures have been taken.
In this thesis, a solenoidal constraint satisfying technique that allows discrete satisfaction of the solenoidal constraint up to the machine accuracy is presented and validated with a variety of test cases. Due to its inspiration from Chorin's artificial compressibility method developed for incompressible CFD applications, the technique was named as extit{artificial compressibility analogy (ACA)} approach.
It is demonstrated that ACA is a purely hyperbolic, stable and consistent technique, which is moreover easy to implement. Unlike some other techniques, it does not pose any problems of the sort that $
ablacdotvec{B}$ errors accumulate in the vicinity of the stagnant regions of flow. With these crucial properties, ACA is thought to be a remedy to the drawbacks of the most commonly used solenoidal constraint satisfying techniques in the literature namely: Incorrect shock capturing and poor performance of the convective stabilization mechanism in regions of stagnant flow for Powell's source term method; exceedingly complex implementation for constrained transport technique due to the staggered grid representation; computationally expensive nature due to the necessity of a Poisson solver combined with hyperbolic/elliptic numerical methods for classical projection schemes.
In the first chapter of the thesis, general background knowledge is given about plasmas, MHD and its history, a certain class of upwind finite volume methods, namely Riemann solvers, and their applications in MHD, the definition, constituents, formation mechanisms and effects of space weather and some of the space missions that are and will be performed in its prediction.
Secondly, detailed analysis of the compressible ideal MHD equations is given in the form of the derivation of the equations, their dimensionless numbers which will be of use to specify the flows in the following chapters, and finally, the presentation of the MHD waves and discontinuities, which indicates the complexity of the system of ideal MHD equations and therefore their further numerical analysis.
The next discussion is about the main subject of the thesis, namely the solenoidal constraint satisfying techniques. First of all, the definition and significance of the solenoidal constraint is given. Afterwards, the most common solenoidal constraint satisfying techniques in the literature are reviewed along with their abovementioned drawbacks. Moreover, particular emphasis is given to the Powell's source term approach which was also implemented in the upwind finite volume MHD solver developed. In addition, the hyperbolic divergence cleaning technique is presented in detail together with the resemblance and differences between it and ACA. Some other solenoidal constraint satisfying techniques are briefly mentioned at this stage. After these, ACA is presented in the following way: The point of inspiration, which is the analogy made with Chorin's artificial compressibility method developed for incompressible CFD, the introduction of the modified system of ideal MHD equations due to ACA, the derivation of the wave equation governing the propagation of $
ablacdotvec{B}$ errors and the analytical consistency proof.
Having finished the core discussion of the thesis, the solver developed and its constituents are given in the fourth chapter. Furthermore, a brief overview of the platform into which this solver was implemented, namely COOLFluiD, is also given at this point.
Afterwards, a thorough numerical verification of the ACA approach has been made on an increasingly complex suite of test cases. The results obtained with ACA and Powell's source term implementations are given in order to numerically analyse and verify ACA and compare the two methods and validate them with the results from literature.
The sixth chapter is devoted to further validation of ACA performed with a variety of more advanced space weather-related simulations. In this chapter, also the $vec{B}_{ extrm{0}} + vec{B}_{ extrm{1}}$ splitting technique used to treat planetary magnetosphere is presented along with its application to ACA and Powell's source term approaches. This technique is utilized in obtaining the solar wind/Earth's magnetosphere interaction results and is based on suppressing the direct inclusion of the Earth's magnetic field, which is a dipole field, in the solution variables. In this way, problems are avoided with the energy equation that could arise from the drastic change of the ratio of the dipole field and the variable field computed by the solver (i.e. $frac{lvertvec{B}_{ extrm{0}}lvert}{lvertvec{B}_{ extrm{1}}lvert}$) in the computational domain.
Finally, conclusions and future perspectives related to the material presented in the thesis are put forward.
|
124 |
Optimization of Strongly Nonlinear Dynamical Systems Using a Modified Genetic Algorithm With Micro-Movement (MGAM)Wei, Xing 01 May 2009 (has links)
The genetic algorithm (GA) is a popular random search and optimization method inspired by the concepts of crossover, random mutation, and natural selection from evolutionary biology. The real-valued genetic algorithm (RGA) is an improved version of the genetic algorithm designed for direct operation on real-valued variables. In this work, a modified version of a genetic algorithm is introduced, which is called a modified genetic algorithm with micro-movement (MGAM). It implements a particle swarm optimization(PSO)-inspired micro-movement phase that helps to improve the convergence rate, while employing the e'cient GA mechanism for maintaining population diversity. In order to test the capability of the MGAM, we firrst implement it on five generally used test functions. Then we test the MGAM on two typical nonlinear dynamical systems. The performance of the MGAM is compared to a basic RGA on all these applications. Finally, we implement the MGAM on the most important application, which is the plasma physics-based model of the solar wind-driven magnetosphere-ionosphere system (WINDMI). In order to use this model for real-time prediction of geomagnetic activity, the model parameters require up-dating every 6-8 hours. We use the MGAM to train the parameters of the model in order to achieve the lowest mean square error (MSE) against the measured auroral electrojet (AL) and Dst indices. The performance of the MGAM is compared to the RGA on historical geomagnetic storm datasets. While the MGAM performs substantially better than the RGA when evaluating standard test functions, the improvement is about 6-12 percent when used on the 20D nonlinear dynamical WINDMI model.
|
125 |
Space Weather Simulation Model IntegrationMolin, Alice, Johnstone, Julia January 2023 (has links)
Space weather is the field within the space sciences that studies how the Earths magnetosphere is influenced by the Sun. The Sun is constantly emitting dangerous radiation and plasma which in some cases can affect or damage the systems on Earth. Scientists have an interest in studying this interaction and therefore visualizations of space weather data are useful. OpenSpace is an interactive software that visualizes the entire known universe with real-time data. OpenSpace supports a range of different visualization methods and techniques, for this work, the relevant visualization tools are field lines and cut planes. GAMERA is a simulation model that simulates a wide range of situations where plasma is subjected to the influence of magnetic fields, the simulations are based on curvilinear grids. This project focuses on implementing data from GAMERA into OpenSpace. OpenSpace already supports a variety of different simulation models, although none that uses curvilinear grids for the data. The curvilinear grid can adapt to the specific shape and geometry of the data, allowing for more accurate data representation. The project aims to create a pipeline for reading data files from simulation runs and visualize it as field lines and cut planes. The files used in this project contain data suitable for volumes and field lines. The method was to first develop a reader to extract and manage desired data from HDF5 files in which the simulation data is stored. The data used to visualize field lines is rendered with an already existing component in OpenSpace. Secondly, a slice operation was developed to extract cut planes from the files containing data for volume visualization, these are then visualized with the help of a component for rendering cut planes which was developed during this work. The work led to a pipeline that reads and manages simulation data from GAMERA and the data is successfully visualized. However, there is room for improvement in color rendering, robustness and level of user interaction during runtime. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
|
126 |
Plasma Interactions with Icy Bodies in the Solar System / Plasmaväxelverkan med isiga kroppar i solsystemetLindkvist, Jesper January 2016 (has links)
Here I study the “plasma interactions with icy bodies in the solar system”, that is, my quest to understand the fundamental processes that govern such interactions. By using numerical modelling combined with in situ observations, one can infer the internal structure of icy bodies and their plasma environments. After a broad overview of the laws governing space plasmas a more detailed part follows. This contains the method on how to model the interaction between space plasmas and icy bodies. Numerical modelling of space plasmas is applied to the icy bodies Callisto (a satellite of Jupiter), the dwarf planet Ceres (located in the asteroid main belt) and the comet 67P/Churyumov-Gerasimenko. The time-varying magnetic field of Jupiter induces currents inside the electrically conducting moon Callisto. These create magnetic field perturbations thought to be related to conducting subsurface oceans. The flow of plasma in the vicinity of Callisto is greatly affected by these magnetic field perturbations. By using a hybrid plasma solver, the interaction has been modelled when including magnetic induction and agrees well with magnetometer data from flybys (C3 and C9) made by the Galileo spacecraft. The magnetic field configuration allows an inflow of ions onto Callisto’s surface in the central wake. Plasma that hits the surface knocks away matter (sputtering) and creates Callisto’s tenuous atmosphere. A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced water ions get picked up by the solar wind flow, and forces the solar wind protons to deflect due to conservation of momentum. This effect of mass-loading increases steadily as the comet draws closer to the Sun. The solar wind is deflected, but does not lose much energy. Hybrid modelling of the solar wind interaction with the coma agrees with the observations; the force acting to deflect the bulk of the solar wind plasma is greater than the force acting to slow it down. Ceres can have high outgassing of water vapour, according to observations by the Herschel Space Observatory in 2012 and 2013. There, two regions were identified as sources of water vapour. As Ceres rotates, so will the source regions. The plasma interaction close to Ceres depends greatly on the source location of water vapour, whereas far from Ceres it does not. On a global scale, Ceres has a comet-like interaction with the solar wind, where the solar wind is perturbed far downstream of Ceres. / Här studerar jag “plasmaväxelverkan med isiga kroppar i solsystemet”, det vill säga, min strävan är att förstå de grundläggande processerna som styr sådana interaktioner. Genom att använda numerisk modellering i kombination med observationer på plats vid himlakropparna kan man förstå sig på deras interna strukturer och rymdmiljöer. Efter en bred översikt över de fysiska lagar som styr ett rymdplasma följer en mer detaljerad del. Denna innehåller metoder för hur man kan modellera växelverkan mellan rymdplasma och isiga kroppar. Numerisk modellering av rymdplasma appliceras på de isiga himlakropparna Callisto (en måne kring Jupiter), dvärgplaneten Ceres (lokaliserad i asteroidbältet mellan Mars och Jupiter) och kometen 67P/Churyumov-Gerasimenko. Det tidsvarierande magnetiska fältet kring Jupiter inducerar strömmar inuti den elektriskt ledande månen Callisto. Dessa strömmar skapar magnetfältsstörningar som tros vara relaterade till ett elektriskt ledande hav under Callistos yta. Plasmaflödet i närheten av Callisto påverkas i hög grad av dessa magnetfältsstörningar. Genom att använda en hybrid-plasma-lösare har växelverkan modellerats, där effekten av magnetisk induktion har inkluderats. Resultaten stämmer väl överens med magnetfältsdata från förbiflygningarna av Callisto (C3 och C9) som gjordes av den obemannade rymdfarkosten Galileo i dess bana kring Jupiter. Den magnetiska konfigurationen som uppstår möjliggör ett inflöde av laddade joner på Callistos baksida. Plasma som träffar ytan slår bort materia och skapar Callistos tunna atmosfär. En långtidsstudie av solvindsprotoner sett från rymdfarkosten Rosetta utfördes då kometen 67P/Churyumov-Gerasimenko närmade sig solen. Ultraviolett strålning från solen joniserar det neutrala vattnet i kometens koma (kometens atmosfär). Nyligt joniserade vattenmolekyler plockas upp av solvindsflödet och tvingar solvindsprotonernas banor att böjas av, så att rörelsemängden bevaras. Denna effekt ökar stadigt då kometen närmar sig solen. Solvinden böjs av kraftigt, men förlorar inte mycket energi. Hybridmodellering av solvindens växelverkan bekräftar att kraften som verkar på solvinden till störst del får den att böjas av, medan kraften som verkar till att sänka dess fart är mycket lägre. Ceres har enligt observationer av rymdteleskopet Herschel under 2012 och 2013 haft högt utflöde av vattenånga från dess yta. Där har två regioner identifierats som källor för vattenångan. Eftersom Ceres roterar kommer källornas regioner göra det också. Plasmaväxelverkan i närheten av Ceres beror i hög grad på vattenångskällans placeringen, medan det inte gör det långt ifrån Ceres. På global nivå har Ceres en kometliknande växelverkan med solvinden, där störningar i solvinden propagerar långt nedströms från Ceres.
|
127 |
Multi-instrument and modelling studies of the ionospheres at Earth and MarsGrandin, M. (Maxime) 24 January 2018 (has links)
Abstract
This thesis studies the ionospheres of the Earth and Mars by combining the observations of versatile instruments providing information on various aspects of the planetary environments. The work on the terrestrial ionosphere focuses particularly on solar wind–magnetosphere–ionosphere coupling, while the work on the Martian ionosphere is based on the development of a new approach to analyse radio-occultation data to retrieve the atmospheric and ionospheric profiles.
In the Earth's ionosphere, two papers study the effects of solar wind high-speed streams on the ionospheric F-region peak electron density and on cosmic noise absorption resulting from the precipitation of energetic (>30 keV) electrons into the D region. For the first paper, a modified version of the superposed epoch analysis method, called phase-locked superposed epoch analysis method, was developed. The main finding is that a depletion near the F-region peak takes place in the afternoon and evening sectors during high-speed stream events. This could be explained by an increase in the electron loss rate as a consequence of ion-neutral frictional heating, which enhances the ion temperature and leads to neutral atmosphere expansion. In addition, dayside and post-midnight F-peak electron density increases are observed, probably related to soft particle precipitation. The second study reveals that cosmic noise absorption occurs during up to 4 days after the arrival of a high-speed stream, as substorm-injected energetic electrons precipitate in the midnight to early-afternoon ionosphere, principally at auroral latitudes. A third study reports for the first time observations of a modulation of cosmic noise absorption at periods near 10 s, associated with pulsating aurora. This suggests that the energetic component of the precipitating ux is modulated consistently with the auroral (1–10 keV) energies.
At Mars, radio-occultation experiments have been performed by the Mars Express spacecraft since 2004. In this thesis, a new data analysis approach is developed, based on the numerical simulation of radio wave propagation through modelled Martian atmosphere and ionosphere. This approach enables one to overcome limitations inherent in the classical inversion method which has been in use so far. It also gives access to new parameters such as ion density profiles. The new method is tested by analysing the data from two radio-occultation experiments. / Tiivistelmä
Tämä väitöskirja tutkii Maapallon ja Marsin ionosfäärejä yhdistämällä useiden eri instrumenttien havaintoja, joilla saadaan tietoa planeettojen ympäristöistä. Maapallon ionosfääriä koskeva työ tutkii aurinkotuuli–magnetosfääri–ionosfäärikytkentää, kun taas Marsin ionosfääriä koskevan työn tavoite on uuden radio-okkultaatiomittauksen data-analyysimenetelmän kehittäminen, joka tuottaa ilmakehän ja ionosfäärin profiileja.
Maan ionosfäärin tapauksessa yhdessä julkaisussa tutkitaan nopeiden aurinkotuulivirtausten vaikutuksia F-kerroksen elektronitiheyteen ja toisessa julkaisussa tutkitaan energeettisten (>30 keV) elektronien sateesta johtuvaa kosmisen radiokohinan absorptiota D-kerroksessa. Ensimmäisessä julkaisussa on kehitetty uusi versio data-analyysimenetelmästä, jota kutsutaan vaihelukituksi epookkien superpositiomenetelmäksi. Julkaisun päätulos on, että nopeiden aurinkotuulivirtausten aikana F-kerroksen maksimielektronitiheys pienenee iltapäivän ja illan sektoreilla. Tämä voidaan selittää johtuvan siitä, että ioni-neutraalitörmäysten synnyttämä kitkalämpö kasvattaa ionilämpötilaa ja aiheuttaa lisäksi ilmakehän laajenemisen. Molemmat prosessit kasvattavat elektronien häviönopeutta. F-kerroksen elektronitiheysmaksimi puolestaan kasvaa sektorilla, joka ulottuu keskiyöstä aamun kautta keskipäivään, ja tämä johtuu matalaenergeettisestä elektronisateesta. Toisessa julkaisussa havaitaan, että lisääntynyt kosmisen radiokohinan absorptio kestää jopa neljä päivää nopean aurinkotuulivirtauksen saavuttua Maan kohdalle. Tämä johtuu siitä, että alimyrskyitse injektoidut energeettiset elektronit satavat keskiyön ja aamun ionosfääriin, pääasiassa revontuliovaalin alueella. Kolmas julkaisu raportoi ensimmäistä kertaa havainnon sykkiviin revontuliin liittyvästä kosmisen radiokohinan absorptiosta n. 10 s jaksollisuudella. Tämä osoittaa, että elektronivuon energeettinen komponentti on moduloitu samalla jaksollisuudella kuin revontulielektronien energiat (1–10 keV).
Marsissa on tehty radio-okkultaatiomittauksia vuodesta 2004 saakka Mars Express -luotaimen avulla. Vaitoskirjassa on kehitetty uusi datan analyysimenetelmä, joka perustuu numeeriseen simulointiin radioaaltojen etenemisestä Marsin ilmakehässä ja ionosfäärissä. Tämän lähestymistavan avulla vältetään tähän asti käytetyn klassisen inversiomenetelmän rajoitukset. Lisäksi menetelmä tuottaa uusia parametrejä kuten ionitiheysprofiileja. Uutta menetelmää testattiin tulkiten kahden radio-okkultaatiomittauksen aineistoa. / Résumé
Le travail présenté dans ce manuscrit de thèse s'articule autour de l'étude des ionosphères terrestre et martienne. Une approche multi-instrumentale est adoptée afin de combiner des observations permettant de mettre en perspective des manifestations de phénomènes physiques de natures différentes mais intervenant dans un même contexte global. Le travail doctoral comporte également un volet modélisation. Le manuscrit de thèse consiste en une partie introductrice à laquelle sont adossées cinq publications dans des revues scientifiques à comité de lecture.
La partie introductrice de ce manuscrit de thèse a pour objectif de présenter le contexte scientifique sur lequel est basé le travail doctoral. Un premier chapitre passe en revue les principaux aspects théoriques dans lesquels s'inscrivent les études dont les résultats sont publiés dans les cinq articles. Les atmosphères et ionosphères de la Terre et de Mars y sont succinctement décrites, de même que les interactions entre ces planètes et le vent solaire, comprenant notamment la formation de magnétosphères. Les deux chapitres suivants présentent les instruments dont sont issues les données utilisées dans ce travail doctoral ainsi que les méthodes d'analyse des données. Le quatrième chapitre résume les principaux résultats obtenus autour des trois grandes thématiques abordées au cours de cette thèse. Enfin, des pistes quant à la continuation potentielle du travail présenté dans ce manuscrit de thèse sont évoquées en conclusion.
Le premier article porte sur une étude statistique des effets des courants de vent solaire rapide sur la région F de l'ionosphère aurorale. Il s'appuie sur des données mesurées par l'ionosonde de Sodankylä entre 2006 et 2008. Au cours de cette période, 95 événements associés à des courants de vent solaire rapide ont été sélectionnés, et la réponse de l'ionosphère au-dessus de Sodankylä a été étudiée à partir des fréquences critiques des régions E et F de l'ionosphère, qui donnent la valeur du pic de concentration électronique dans ces deux régions. Pour cela, une version modifiée de la méthode des époques superposées a été développée, appelée “méthode des époques superposées avec verrouillage de phase”. Une augmentation du pic de concentration des régions E et F est observée du côté nuit et le matin, en lien avec une activité aurorale accrue, tandis qu'une déplétion de la région F est révélée aux temps magnétiques locaux situés entre 12 h et 23 h. Une estimation des effets d'une possible modification de l'équilibre photo-chimique résultant d'un accroissement du chauffage issu de la friction entre les ions et les éléments neutres est proposée.
Le deuxième article s'intéresse aux précipitations énergétiques dans l'ionosphère aurorale durant ces mêmes 95 événements, en étudiant l'absorption du bruit cosmique qui en résulte. Il apparaît que les événements au cours desquels le vent solaire demeure rapide pendant plusieurs jours produisent davantage de précipitations énergétiques, qui peuvent atteindre les latitudes subaurorales. Par ailleurs, trois types de précipitations énergétiques sont étudiés séparément, selon qu'elles sont associées avec des signatures de sous-orage magnétique, avec des pulsations géomagnétiques, ou ni l'un ni l'autre. Les deux premiers types de précipitations semblent liés. En effet, l'analyse des données suggère que les électrons énergétiques sont injectés dans la magnétosphère interne durant les sous-orages. Tandis qu'une partie d'entre eux précipitent immédiatement du côté nuit, d'autres dérivent vers le côté matin, où ils subissent des interactions avec des ondes électromagnétiques de type siffleur (whistler en anglais), qui peuvent être modulées par des pulsations géomagnétiques, menant à leur précipitation.
Le troisième article présente pour la première fois l'observation de signatures d'aurore pulsante dans des données d'absorption du bruit cosmique. Ces signatures sont consistantes avec les pulsations observables dans l'émission aurorale, et semblent indiquer une modulation cohérente des composantes aurorale (1–10 keV) et énergétique (> 30 keV) du spectre des précipitations électroniques au cours d'une aurore pulsante.
Le quatrième article introduit une nouvelle méthode proposée pour analyser les données de radio-occultation mesurées par la sonde Mars Express. Cette approche vise à contourner des difficultés posées par les hypothèses fortes nécessaires à la mise en œuvre de la méthode classique d'inversion, notamment celle d'un environnement martien à symétrie sphérique — qui n'est pas acceptable lors de sondages proches du terminateur jour-nuit. La nouvelle méthode est basée sur la modélisation de l'atmosphère et de l'ionosphère de Mars, et sur la simulation de la propagation des ondes radio entre la station sol sur Terre et Mars Express lors d'une expérience de radio-occultation. Les paramètres libres contrôlant les profils atmosphériques et ionosphériques sont ajustés afin que la simulation reproduise le plus fidèlement possible les mesures.
Le cinquième article est une réponse à un commentaire sur l'article précédent. Il vise d'une part à répondre aux critiques émises sur la méthode développée, montrant que celles-ci n'en remettent en cause ni la validité ni la pertinence, et d'autre part à y apporter quelques améliorations.
|
128 |
Analysis of Particle Precipitation and Development of the Atmospheric Ionization Module OSnabrück - AIMOSWissing, Jan Maik 31 August 2011 (has links)
The goal of this thesis is to improve our knowledge on energetic particle precipitation into the Earth’s atmosphere from the thermosphere to the surface. The particles origin from the Sun or from temporarily trapped populations inside the magnetosphere.
The best documented influence of solar (high-) energetic particles on the atmosphere is the Ozone depletion in high latitudes, attributed to the generation of HOx and NOx by precipitating particles (Crutzen et al., 1975; Solomon et al., 1981; Reid et al., 1991). In addition Callis et al. (1996b, 2001) and Randall et al. (2005, 2006) point out the importance of low-energetic precipitating particles of magnetospheric origin, creating NOx in the lower thermosphere, which may be transported downwards where it also contributes to Ozone depletion.
The incoming particle flux is dramatically changing as a function of auroral/geomagnetical activity and in particular during solar particle events. As a result, the degree of ionization and the chemical composition of the atmosphere are substantially affected by the state of the Sun. Therefore the direct energetic or dynamical influences of ions on the upper atmosphere depend on solar variability at different time scales.
Influences on chemistry have been considered so far with simplified precipitation patterns, limited energy range and restrictions to certain particle species, see e.g. Jackman et al. (2000); Sinnhuber et al. (2003b, for solar energetic protons and no spatial differentiation), and Callis et al. (1996b, 2001, for magnetospheric electrons only). A comprehensive atmospheric ionization model with spatially resolved particle precipitation including a wide energy range and all main particle species as well as a dynamic magnetosphere was missing.
In the scope of this work, a 3-D precipitation model of solar and magnetospheric particles has been developed. Temporal as well as spatial ionization patterns will be discussed. Apart from that, the ionization data are used in different climate models, allowing (a) simulations of NOx and HOx formation and transport, (b) comparisons to incoherent scatter radar measurements and (c) inter-comparison of the chemistry part in different models and comparison of model results to MIPAS observations. In a bigger scope the ionization data may be used to better constrain the natural sources of climate change or consequences for atmospheric dynamics due to local temperature changes by precipitating particles and
their implications for chemistry. Thus the influence of precipitating energetic particles on the composition and dynamics of the atmosphere is a challenging issue in climate modeling. The ionization data is available online and can be adopted automatically to any user specific model grid.
|
129 |
Papers and related collections of James A. Van Allen,Van Allen, James Alfred, Unknown Date (has links)
Includes Van Allen thesis (M.S.)--University of Iowa, 1936, and thesis (Ph.D.)--University of Iowa, 1939.
|
Page generated in 0.0693 seconds