51 |
Synthesis of Metal-Rich Compounds of Group 15 Elements in Lewis-Acidic Ionic LiquidsGroh, Matthias Friedrich 21 December 2016 (has links)
Chemical synthesis of materials is facing enormous challenges at the present time. The necessary transition toward more sustainable economic processes requires new materials as well as optimized production of well-established materials. However, inorganic materials (e.g., ceramics or alloys) are typically produced industrially by high-temperature processes at up to 2000 °C. A relatively new approach for inorganic synthesis is based on so-called ionic liquids.
Ionic liquids (ILs) — often defined as salts with melting points below 100 °C[1] — are usually composed of sterically demanding organic cations and (often) polyatomic anions, which can be selected in order to tune the properties of the IL. Owing to the distinctive physicochemical properties of ILs (e.g., wide liquidus range, high redox and thermal stability, (usually) negligible vapor pressure, tunable polarity), they have gained interest for a wide range of applications. Among the numerous inorganic materials accessible in ILs have been remarkable examples, especially in main-group element chemistry. For instance, a new metastable modification of germanium in the clathrate-II structure[2] or the largest known naked, main-group element cluster [Sn36Ge24Se132]24– (“Zeoball”).[3] The introduction of Lewis-acidic ILs has enhanced the convenience of polycation syntheses and enabled substitution of carcinogenic or toxic substances like benzene, SO2, or AsF5.[4] A considerable number of polycations of group 15 or 16 elements has been synthesized in ILs. The utilization of an IL as reaction medium can be decisive for the composition, structure, and physical properties of the (polycationic) reaction product.[5]
In order to broaden the knowledge on synthesis techniques for inorganic materials near ambient temperature based on ILs, this thesis aimed at two goals:
• Explorative synthesis of new inorganic compounds in ILs
• Elucidating the influence of ILs on product formation
For these two goals, metal-rich (polycationic) compounds of group 15 were chosen as promising chemical system, owing to the effectiveness of alkylimidazolium-based Lewis-acidic ILs for the synthesis of this class of compounds.
A variety of new polycationic compounds has been successfully synthesized in Lewis-acidic ILs based on 1-n-butyl-3-methylimidazolium (or 1-ethy-3-methylimidazolium) halides and halogenido-aluminates. Determination of the crystal structures by single-crystal X-ray diffraction enabled analysis of their bonding situation supported by quantum-chemical calculations.
In general, the employed ILs enabled syntheses with a high selectivity for the yielded polycation. Depending on the investigated chemical system, the following parameters were pinpointed to have significant influence:
• Choice of starting materials
• Choice of cation as well as anion of the IL
• Reaction temperature
• Concentration of starting materials in the IL
The investigations were supported by NMR spectroscopy, which led to the discovery of nanoparticles of red phosphorus. This finding may stimulate the development of an easily accessible, reactive form of phosphorus without the hazardous drawbacks of the white allotrope. In addition, in situ NMR measurements in ILs were proven a viable option for mechanistic investigations.
Conventional solid-state reaction as well as ionothermal syntheses yielded the new layered compounds M2Bi2S3(AlCl4)2 (M = Cu, Ag), which can be interpreted as Bi2S3 molecules embedded in MAlCl4 salts. The choice of starting materials was found to have a crucial influence on the crystallized polytype. Omitting the IL hindered the formation of crystals suitable for single-crystal structure determination.
The three new main-group element heteropolycations [Bi6Te4Br2]4+, [Bi3S4AlCl]3+, and [Sb13Se16]7+ as well as known [Bi4Te4]4+ has been synthesized under ionothermal conditions. The Lewis-acidic ILs proved to be exceptional solvents for elements and their halides, and likewise for Bi2S3 and Bi2Te3. Hence, these solvents are not only advantageous reaction media for pnictogen and chalcogen chemistry but also potential (selective but expensive) ore-processing agents.
These excellent solvent capabilities extend to complex ternary compounds including heavy transition metals such as Bi16PdCl22 and elemental platinum. This gave rise to the synthesis of metal-rich salts containing [Bi10]4+ antiprisms with an endohedral palladium or, for the first time, platinum atom. Furthermore, the filled bismuth polycation [Rh@Bi9]4+ or the complex cluster [Rh2Bi12]4+ could be obtained from dissolution and conversion of Bi12−xRhX13–x (X = Cl, Br) depending on the employed IL. Real-space bonding analysis revealed that [Rh2Bi12]4+ acquires a unique standing between dative bonding by bismuth polyions and mixed clusters following Wade-Mingos rules.
References
[1] J. S. Wilkes, P. Wasserscheid, T. Welton, in Ionic Liquids in Synthesis (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 1–6.
[2] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, Nature 2006, 443, 320–323.
[3] Y. Lin, W. Massa, S. Dehnen, J. Am. Chem. Soc. 2012, 134, 4497–4500.
[4] E. Ahmed, D. Köhler, M. Ruck, Z. Anorg. Allg. Chem. 2009, 635, 297–300.
[5] E. Ahmed, J. Beck, J. Daniels, T. Doert, S. J. Eck, A. Heerwig, A. Isaeva, S. Lidin, M. Ruck, W. Schnelle, et al., Angew. Chem. 2012, 124, 8230–8233; Angew. Chem. Int. Ed. 2012, 51, 8106–8109.
|
52 |
INVESTIGATIONS TOWARDS THE PREPARATION OF PHOTORESPONSIVE POLYMERS BASED ON PHOTOCLEAVABLE TELLURIUM-CONTAINING CROSS-LINKSGendy, Chris 10 1900 (has links)
<p>The goal of this research project is to synthesize, characterize, and examine the properties of a material that undergoes a decrease in refractive index upon exposure to light. It is anticipated that such photoresponses could elicit previously unknown nonlinear phenomena including self-trapped black beams. An appropriate material for these investigations would be a polymer cross-linked by photocleavable groups causing a Δ<em>n</em> < 0. Organo-ditellurides, molecules that contain a Te-Te bond, would be appropriate for the crosslinks as their σ*<sub>Te-Te</sub> ← n<sub>Te</sub> transition usually absorbs light between 400 and 500 nm, and can lead to photodissociation of the chalcogen-chalcogen bond.</p> <p>Initial attempts to directly functionalize a polymer (polystyrene) resulted in intractable solids. A more promising approach relies on the preparation of cross-linking agents followed by co-polymerization. Despite literature claims, to date, there is no structurally authenticated photoresponsive molecule that simultaneously contains vinyl (CH=CH) and telluride (-Te-) functional groups. The work in this thesis has yielded what would be the first example, in addition to a crystal structure obtained by X-ray diffraction, the compound has been characterized by multinuclear NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>125</sup>Te) and vibrational spectroscopy with the support of DFT calculations.</p> / Master of Science (MSc)
|
53 |
<b>Fundamental Inorganic Chemistry for Renewable Energy Resources: Highlights in Tellurium, Zirconium, Hafnium, and Neptunium Coordination Chemistry</b>Madeleine Claire Uible (19173208) 18 July 2024 (has links)
<p dir="ltr">The separation of tellurium from cadmium telluride is examined using a unique combination of mild, anhydrous chlorination and complexation of the subsequent tellurium tetrachloride with 3,5-di-<i>tert</i>-butylcatechol. The resulting tellurium complex, Te(dtbc)<sub>2</sub>, is isolated in moderate yield and features a 10<sup>3</sup> to 10<sup>4</sup> reduction in cadmium content, as provided by XRF and ICP-MS analysis. Similar results were obtained from zinc telluride. A significant separation between Te, Se, and S was observed after treating a complex mixture of metal chalcogenides with this protocol. These three tunable steps can be applied for future applications of CdTe photovoltaic waste.</p><p dir="ltr">We report the synthesis and characterization of the first series of tellurium and selenium complexes featuring an η<sup>5</sup>-cyclopentadienyl ligand. Reaction of Ph<sub>3</sub>TeX (X = Cl, S<sub>2</sub>CNEt<sub>2</sub>) with MCp<sup>R</sup> (M = Li, K; R = H, Me<sub>4</sub>, Me<sub>5</sub>) results in high yields of [Cp][TePh<sub>3</sub>] (<b>1</b>), [Cp<sup>Me4</sup>][TePh<sub>3</sub>] (<b>2</b>), and [Cp*][TePh<sub>3</sub>] (<b>3</b>), respectively. Similarly, reaction of Ph<sub>3</sub>SeCl with LiCp and KCp* furnishes [Cp][SePh<sub>3</sub>] (<b>4</b>) and [Cp*][SePh<sub>3</sub>] (<b>5</b>). Each was characterized by X-ray crystallography, revealing similar η<sup>5</sup>-coordination with little distortion from an idealized half-sandwich geometry, presumably from the remaining lone pair on tellurium and selenium. The Te–centroid distances are relatively long (<b>1</b>: 2.770(3), <b>2</b>: 2.746(1), and <b>3</b>: 2.733(1) Å), suggesting a mostly ionic interaction. Se–centroid distances (<b>4</b>: 2.748(3), <b>5</b>: 2.707(2), 2.730(2) Å) were found to be surprisingly similar despite its smaller atomic radius. Compounds <b>2</b>, <b>3</b>, and <b>5</b> display rapid decomposition at room temperature, extruding a phenylated cyclopentadiene and the and the respective diphenylchalcogenide. The nature of bonding within these complexes was investigated through DFT methods and found to be primarily ionic in nature.</p><p dir="ltr">Synthesis of homoleptic zirconium and hafnium dithiocarbamate via carbon disulfide insertion into zirconium and hafnium amides were investigated for their utility as soluble molecular precursors for chalcogenide perovskites and binary metal sulfides. Treating M(NEtR)<sub>4</sub> (M= Zr, Hf and R= Me, Et) with CS<sub>2</sub> resulted in quantitative yields of homoleptic Group IV dithiocarbamates. Zr(k<sup>2</sup>-S<sub>2</sub>CNMeEt) (<b>1</b>), Zr(k<sup>2</sup>-S<sub>2</sub>CNEt<sub>2</sub>)<sub>4</sub> (<b>2</b>), and Hf(k<sup>2</sup>-S<sub>2</sub>CNEt<sub>2</sub>)<sub>4 </sub>(<b>4</b>), a rare example of a crystal of a homoleptic hafnium CS<sub>2</sub> inserted amide species, were characterized. A computational analysis confirmed assignments for IR spectroscopy.<b> </b>To exemplify the utility of the Group IV dithiocarbamates, a solution-phase nanoparticle synthesis was performed to obtain ZrS<sub>3</sub> via the thermal decomposition of Zr(S<sub>2</sub>CNMeEt)<sub>4</sub></p><p dir="ltr">Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS<sub>3</sub> and BaHfS<sub>3</sub> chalcogenide perovskite films using single-phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications.</p><p dir="ltr">Np(IV) Lewis base adducts were prepared by ligand substitution of NpCl<sub>4</sub>(DME)<sub>2</sub>. Using acetonitrile and pyridine, NpCl<sub>4</sub>(MeCN)<sub>4</sub> (<b>1</b>) and NpCl<sub>4</sub>(pyr)<sub>4</sub> (<b>2</b>), were isolated, respectively. All species were fully characterized using spectroscopic and structural analyses.</p>
|
54 |
New main group and rare earth complexes and their applications in the ring-opening polymerisation of cyclic estersCushion, Michael Gregory January 2011 (has links)
This Thesis describes the synthesis and characterisation of new Main Group and Rare Earth alkyl, amide, alkoxide and borohydride complexes and their use as catalysts for the ring-opening polymerisation (ROP) of ε-caprolactone and rac-lactide. <strong>Chapter 1</strong> introduces ROP from an industrial and academic perspective, as well as polymer characterisation techniques. A literature review is given, with an emphasis placed on Main Group catalysts. <strong>Chapter 2</strong> describes the synthesis and characterisation of new homo- and hetero-scorpionate Main Group complexes. An introduction to homo- and hetero-scorpionate ligands is given, as well as a discussion of the ε-caprolactone and rac-lactide ROP activity displayed by the new complexes. <strong>Chapter 3</strong> describes the synthesis and characterisation of new neutral and cationic Main Group borohydride complexes supported by the tris(pyrazolyl)methane and tris(pyrazolyl)hydroborate ligands. A review of borohydride complexes is also given. The ε-caprolactone and rac-lactide ROP activity shown by the complexes presented is also discussed. <strong>Chapter 4</strong> describes the synthesis and characterisation of new mono- and di-cationic yttrium complexes supported by the tris(pyrazolyl)methane and triazacyclononane ligands. An introduction to the synthesis of neutral and cationic Rare Earth complexes is given. An overview of immortal ROP is also provided. The activity of the new complexes towards the immortal ROP of rac-lactide is also discussed. <strong>Chapter 5</strong> contains experimental details and characterising data for the new complexes reported in this thesis. CD Appendix</strong> contains .cif files for all of the new crystallographically characterised complexes.
|
55 |
Approches éco-compatibles en catalyse homogène : développement de nouvelles méthodologies de synthèse pour la formation de molécules complexes / Eco-Friendly Appraoches in Homogeneous Catalysis : development of New Synthetic Methodologies for the Formation of Complex ScaffoldsVayer, Marie 06 November 2018 (has links)
Grâce à l’utilisation de catalyseurs sacrifiables issus, la plupart du temps, du groupe principal ou de la première période des éléments de transition, des nouvelles méthodologies de synthèse pour accéder à des molécules complexes ont été développées au cours de cette thèse. i) Des bicyclolactones ont été synthétisées par addition intramoléculaire de β-cétoesters sur des diènes-1,3 catalysée par un système coopératif de Bi(OTf)₃ et d’HOTf. ii) le motif 7-alcynylcycloheptatriène a été étudié et a permis d’accéder sélectivement à différents produits issus soit d’une cycloisomérisation d’énynes-1,6 ou d’une hydroarylation d’allènes, en fonction du caractère dur ou mou de l’acide de Lewis utilisé. iii) Ce motif a ensuite été utilisé comme plateforme pour accéder à des molécules polycycliques en présence d’acides de Lewis ou à des bromophénylallènes en présence d’un agent de bromation. Les bromoallènes ainsi formés ont pu être engagé dans des réactions de couplages C-C et C-N ou dans une réaction de CH-propargylation. iv) La N-éthylation réductrice d’imines en présence d’éthanol et d’un complexe de fer facilement accessible a été étudiée et a conduit à la formation d’amines tertiaires portant trois substituants différents. / Due to the use of sacrificial catalysts, most of the time derived from main group elements or 1st row transition metal, new methodologies were developed in this thesis to access complex molecules. i) Bicyclolactones were synthesized by an intramolecular addition of β-ketoesters into 1,3-dienes catalyzed by a cooperative Bi(OTf)₃ / HOTf catalytic system. ii) The 7-alkynylcyclohepatriene moiety was studied and afforded different products provided by a cycloisomerization of 1,6-enynes or an hydroarylation of allenes. The selectivity of this reaction is dependent of the soft or hard character of the Lewis acids engaged. iii) Afterward, the 7-alkynylcycloheptatriene moeity was used as a plateform to access various polycyclic molecules in presence of Lewis acids or bromophenylallenes in presence of a bromation agent. Thus the bromoallene formed can be engaged in C-C and C-N cross coupling reactions or in a CH propargylation reaction. iv) The reductive ethylation of imines using ethanol and a simple iron complex was developed and led to the formation of tertiary amines with three different substituents.
|
Page generated in 0.0785 seconds