Spelling suggestions: "subject:"demaizière"" "subject:"gazière""
1 |
Peter Guthrie Tait : new insights into aspects of his life and work : and associated topics in the history of mathematicsLewis, Elizabeth Faith January 2015 (has links)
In this thesis I present new insights into aspects of Peter Guthrie Tait's life and work, derived principally from largely-unexplored primary source material: Tait's scrapbook, the Tait–Maxwell school-book and Tait's pocket notebook. By way of associated historical insights, I also come to discuss the innovative and far-reaching mathematics of the elusive Frenchman, C.-V. Mourey. P. G. Tait (1831–1901) F.R.S.E., Professor of Mathematics at the Queen's College, Belfast (1854–1860) and of Natural Philosophy at the University of Edinburgh (1860–1901), was one of the leading physicists and mathematicians in Europe in the nineteenth century. His expertise encompassed the breadth of physical science and mathematics. However, since the nineteenth century he has been unfortunately overlooked—overshadowed, perhaps, by the brilliance of his personal friends, James Clerk Maxwell (1831–1879), Sir William Rowan Hamilton (1805–1865) and William Thomson (1824–1907), later Lord Kelvin. Here I present the results of extensive research into the Tait family history. I explore the spiritual aspect of Tait's life in connection with The Unseen Universe (1875) which Tait co-authored with Balfour Stewart (1828–1887). I also reveal Tait's surprising involvement in statistics and give an account of his introduction to complex numbers, as a schoolboy at the Edinburgh Academy. A highlight of the thesis is a re-evaluation of C.-V. Mourey's 1828 work, La Vraie Théorie des quantités négatives et des quantités prétendues imaginaires, which I consider from the perspective of algebraic reform. The thesis also contains: (i) a transcription of an unpublished paper by Hamilton on the fundamental theorem of algebra which was inspired by Mourey and (ii) new biographical information on Mourey.
|
Page generated in 0.032 seconds