Spelling suggestions: "subject:"maladie dde parkinson's"" "subject:"maladie dee parkinson's""
121 |
Prévalence et facteurs de risque professionnels de la maladie de Parkinson parmi les affiliés à la Mutualité Sociale AgricoleMoisan, Frédéric 25 November 2011 (has links) (PDF)
La maladie de Parkinson est l'une des principales pathologies neurodégénératives, mais il existe peu de données françaises sur sa fréquence. Des études antérieures suggèrent que l'exposition aux pesticides est un facteur de risque de maladie de Parkinson ; la population agricole représente donc une population particulièrement intéressante. Nous avons étudié l'intérêt d'une méthode utilisant les remboursements de médicaments antiparkinsoniens pour identifier les patients parkinsoniens parmi les affiliés de la Mutualité Sociale Agricole dans cinq départements en 2007 en développant, à partir de 1 114 consommateurs de médicaments antiparkinsoniens, un modèle prédictif dont nous avons estimé les performances (sensibilité =92,5 %, spécificité = 86,4 %, statistique c = 0,953 %). A partir de ce modèle, nous estimons que la prévalence de la maladie de Parkinson dans les cinq départements est de 6,20 ‰ après18 ans et de 2,76 ‰ après standardisation sur l'âge et le sexe (population française de 2007comme référence). La prévalence est 1,3 fois plus élevée dans les cantons où la densité en exploitations spécialisées en vergers et autres cultures permanentes est la plus élevée ; ce typed'exploitation est caractérisé par une utilisation intensive de pesticides, notamment d'insecticides. Des informations détaillées sur l'utilisation professionnelle de pesticides ont été recueillies dans une étude cas-témoins (331 cas, 660 témoins). Nous observons une association entre la maladie de Parkinson et l'utilisation intensive (nombre élevéd'applications par an) de fongicides et d'insecticides. Parmi les différents types d'exploitations, une association avec la maladie de Parkinson est uniquement retrouvée pour l'utilisation de pesticides dans les exploitations viticoles. Enfin, l'association avec l'exposition professionnelle aux pesticides semble plus marquée pour la présentation clinique de la maladie caractérisée par la présence d'un tremblement de repos
|
122 |
Nouvelles stratégies pour l'analyse protéomique du tissu cérébral et des fluides biologiques dans la maladie de ParkinsonZaccaria, Affif 15 March 2013 (has links) (PDF)
L'analyse protéomique du tissu cérébral pathologique dans la maladie de Parkinson (MP) est un enjeu majeur à l'identification des causes moléculaires de la dégénérescence en vue de développer des thérapies curatives. Jusqu'à présent, les études chez l'humain se sont limitées à l'analyse du cerveau post-mortem, trop souvent représentatif d'un stade très avancé de la maladie et potentiellement altéré par différents facteurs. Dans ce travail, nous avons exploité l'accès temporaire au cerveau parkinsonien durant l'implantation d'électrodes de stimulation, pour obtenir une information moléculaire du tissu cérébral, in vivo et à un stade moins avancé de la maladie. Afin d'optimiser notre stratégie, nous avons ensuite développé un outil dédié à la capture tissulaire dont l'efficacité et le caractère non lésionnel ont été validés in vivo chez le primate. Ce travail permet d'envisager l'analyse protéomique du cerveau parkinsonien " vivant " afin d'identifier les causes moléculaires de la MP. En revanche, cette approche tissulaire n'est pas envisageable pour un diagnostic en routine clinique. Aussi, de nombreux groupes s'intéressent à l'analyse protéomique du LCR en vue d'identifier des marqueurs diagnostiques. Dans cette optique, nous avons mis au point une stratégie, basée sur l'utilisation de nanoparticules (NPs) fonctionnalisées qui a permis un enrichissement considérable des profils protéiques observés en spectrométrie de masse. La reproductibilité et la possibilité d'automatiser intégralement la préparation des échantillons font de notre approche une solution adaptée à la recherche de marqueurs moléculaires diagnostiques de la MP dans le LCR. Nous avons aussi démontré l'intérêt de notre approche pour l'analyse protéomique du plasma et du globule rouge. Enfin, nous avons évalué la possibilité d'utiliser ces NPs in vivo, pour une capture des protéines directement dans la circulation sanguine.
|
123 |
Spectroscopie RMN, des stratégies couramment utilisées en clinique vers les techniques de demain. / NMR Spectroscopy, from Strategies commonly used in Clinic to future TechniquesMazuel, Leslie 03 September 2014 (has links)
La maladie de Parkinson est une maladie neurodégénérative du système cerveau central conduisant à l'apparition des troubles moteurs caractéristiques de la maladie : akinésie, rigidité et tremblement de repos. La perte des neurones dopaminergiques de la voie nigro-striée va conduire à des modifications biochimiques au niveau du putamen. Notamment, les travaux réalisés en électrophysiologie, microdialyse et spectroscopie par résonance magnétique (SRM) suggèrent une hyperactivité de la voie glutamatergique cortico-striatale associée à un changement du microenvironnement glial au niveau du putamen. Ces observations conduisent à penser à une adaptation du cycle glutamate-glutamine ayant lieu entre les neurones et les astrocytes en réponse à la perte neuronale. Ainsi, dans ce travail de thèse, deux approches ont été développées afin de suivre par SRM les changement métaboliques impliqués dans la pathologie parkinsonienne, notamment les variations des concentrations en glutamate et glutamine dans le putamen. Une première approche de la quantification des métabolites cérébraux par spectroscopie du 1H, technique couramment utilisée en clinique, a été utilisée pour suivre l'évolution des métabolites d'intérêt chez des patients parkinsoniens à jeun ou suite à la prise d'un traitement dopaminergique. Si cette étude a révélé des changements de concentration en N-acetylaspartate, créatine et myoinositol chez les patiens parkinsoniens, aucun changement du métabolisme glutamatergique n'a pu être observé par cette technique, peut-être à cause d'un manque de sensibilité de la technique pour discriminer les pools de glutamate et de glutamine. De ce fait, une nouvelle approche de SRM du Carbone 13C a été développée pour le suivi du cycle glutamate-glutamine in vivo, c'est la polarisation dynamique nucléaire (PDN). Grâce à la haute sensibilité de cette technique, il est désormais possible de suivre des voies métaboliques in vivo en temps réel. La mise en place et l'optimisation de la PDN pour le suivi du cycle glutamate-glutamine a été un des objectifs au cours de ce projet de thèse. Validée sur un groupe d'animaux contrôle, cette technique offre un avenir prometteur pour l'analyse de ce flux dans les pathologies neurodégénératives. En conclusion, les stratégies diagnostiques en clinique par SRM du 1H restent, à l'heure actuelle, peu sensibles pour l'étude des modifications du cycle glutamate-glutamine in vivo chez l'homme. Les développements technologiques réalisés au cours de ce travail de thèse notamment avec la PDN du 13C laissent entrevoir une nouvelle approche pour le suivi en temps réel de ce métabolisme cérébral. Si la PDN est principalement utilisée dans des études précliniques, la disponibilité de nouveaux systèmes cliniques pourrait permettre son avènement en tant que nouvelle stratégie de diagnostic en imagerie clinique. / Parkinson's disease is a neurodegenerative disorder characterized by motor troubles such as akinesia, rigidity and tremor. The loss of dopaminergic neurons from the nigro-striatal pathway will lead to biochemical changes in the putamen. Especially, works on electrophysiology, micro dialysis and magnetic resonance spectroscopy (MRS) suggests hyperactivity of the glutamatergic cortico-striatal pathway associated with glial microenvironment changes. These observations suggest a modification of the glutamate-glutamine cycle occurring between neurons and astrocytes in response to neuronal loss.In this thesis, two approaches have been developed in order to follow by MRS the metabolic changes occuring in Parkinson's disease. In particular, we want to follow the changes in glutamate-glutamine cycle inside the putamen.in a first study, a a 1H MRS approach was used to assess the metabolic changes inside the putamen of Parkinson's disease without or under dopaminergic treatment. In this study, changes in N-acetylaspartate, creatine and myo-inositol were observed in Parkinsonian patients, but no change in glutamatergic metabolism was observed. This could be due to the lack of sensitivity of the technique to differentiate glutamate and glutamine pools.Thus, we chose to use a new 13C carbon MRS approach in order to follow dynamically in vivo the glutamate-glutamine cycle inside the brain: dynamic nuclear polarization (DNP). Thanks to the high sensitivity of this technique, it is now possible to follow metabolic pathways in vivo in real time. The implementation of DNP was assessed under a control group of animals. This technique offers a new promising tool for the analysis of this flow under pathologic conditions.To conclude, the MRS strategies for clinical diagnostic strategies remain, at present, poorly sensitive for the study of glutamate-glutamine cycle in vivo in humans. The development of DNP opens the door to a new approach for real-time monitoring of this cerebral metabolism Even if DNP is mainly used in preclinical studies at present, the development of new clinical systems could lead to its emergence as a new diagnostic strategy in clinical imaging.
|
124 |
Le colliculus supérieur dans la maladie de Parkinson : un biomarqueur possible ? / The superior colliculus in Parkinson's disease : a possible biomarker ?Bellot, Emmanuelle 06 December 2017 (has links)
Certains troubles visuo-moteurs observés dès le stade précoce de la maladie de Parkinson (MP) pourraient être liés à une altération du fonctionnement d’une structure sous-corticale reliée aux ganglions de la base, le colliculus supérieur (CS). L’objectif de cette thèse a été d’explorer l’état fonctionnel du CS chez le patient parkinsonien nouvellement diagnostiqué (de novo) avant et après instauration du traitement dopaminergique, afin d’évaluer son potentiel de biomarqueur. Pour cela, un paradigme expérimental d’Imagerie par Résonance Magnétique fonctionnelle (IRMf) a été développé, permettant d’imager avec succès l’activité fonctionnelle du CS et également du corps genouillé latéral (CGL) et de l’aire visuelle primaire V1 et de moduler leur activité via l’emploi de stimulation visuelle jouant sur de très faibles niveaux de contraste (<10%). Un test de psychophysique a également été développé, permettant d’estimer la réponse perceptuelle au contraste. Nous avons dans un premier temps testé notre protocole expérimental auprès de sujets sains d’âge variable afin d’évaluer le fonctionnement de ces trois régions d’intérêt (ROIs) au cours du vieillissement normal et de différencier les effets liés à l’âge de ceux potentiellement liés à la pathologie (Etude 1). Une diminution statistiquement significative de la réponse BOLD au sein du CGL et de V1 avec l’âge a été observée, ces réponses corrélant de plus parfaitement avec les réponses perceptuelles estimées en psychophysique. Les voies magnocellulaire et parvocellulaire semblent jouer un rôle dans cette perte de sensibilité au contraste de luminance liée à l’âge. Nous avons dans un second temps testé notre protocole auprès de patients parkinsoniens de novo avant et après instauration du premier traitement dopaminergique afin d’évaluer les effets de la MP et du traitement sur le fonctionnement de nos ROIs (Etude 2). Une altération précoce du traitement du contraste a été observée au sein du CS et du CGL chez les patients parkinsoniens, non normalisée par l’instauration du traitement dopaminergique. Ces travaux de thèse ont ainsi mis en évidence un déficit fonctionnel du CS et du CGL survenant précocement durant l’évolution de la MP, confirmé par nos analyses de connectivité effective. Ces résultats pourraient favoriser l’identification de déficits liés à un dysfonctionnement sensoriel de ces structures tout comme le développement de tests paraclinique et clinique impliquant ce système pour un diagnostic plus précoce de la maladie. / Some visuo-motor impairments observed in the early stages of Parkinson’s disease (PD) might be related to a dysfunction of a subcortical structure connected to the basal ganglia, the superior colliculus (SC). The aim of this PhD thesis was to explore the functional state of the SC in newly diagnosed (de novo) PD patients before and after dopaminergic treatment intake, in order to evaluate the potential value of the SC functioning as a biomarker. To do this, we developed a functional Magnetic Resonance Imaging (fMRI) experimental protocol, which successfully imaged the SC and also the lateral geniculate nucleus (LGN) and primary visual area V1 functional activity and modulate their activity by using visual stimuli with low luminance contrast levels (<10%). Additionally, we estimated the perceptual response to contrast by using a psychophysical task. We tested in a first time this experimental protocol on healthy subjects with varying age in order to evaluate the effect of normal aging on the functioning of these regions of interest (ROIs) and to distinguish the effects related to age from those potentially related to the pathology (Study 1). A significant progressive decrease of the BOLD amplitude with age was observed in the LGN and V1. These data were consistent with the response functions obtained with the psychophysical task. These results indicate a significant luminance contrast sensitivity decline with age of both the magnocellular and parvocellular pathways. In a second time, we tested our protocol on de novo PD patients before and after the introduction of the first dopaminergic treatment in order to assess the effects of PD and treatment on the ROIs functioning (Study 2). Our results highlighted an early alteration of the contrast processing for the SC and LGN in PD patients, with no normalization after dopaminergic treatment introduction. These findings indicate a functional deficit of the SC and LGN that appears early in the disease course, in line with our effective connectivity analyses. These results could favor the identification of deficits linked to sensory dysfunction of these structures as well as the development of paraclinical and clinical tests involving this system for an early diagnosis of the disease.
|
125 |
Contribution à l'étude du rôle de la Sélénoprotéine T dans la maladie de ParkinsonBoukhzar, Loubna 12 January 2017 (has links)
Les maladies neurodégénératives sont des pathologies progressives qui affectent le système nerveux, entraînant la mort des cellules nerveuses. Les plus connues et les plus fréquentes sont la maladie d’Alzheimer et la maladie de Parkinson, mais il en existe d’autres. Toutes ces maladies se caractérisent par la perte progressive de neurones dans des régions plus ou moins localisées du système nerveux, entraînant des complications cognitives, motrices ou perceptives. La maladie de Parkinson (MP) est causée par la dégénérescence de neurones dopaminergiques de la substance noire et de leurs terminaisons nerveuses qui normalement libèrent la dopamine dans le striatum. Les deux principaux facteurs de risque communs aux maladies neurodégénératives sont l’âge et le stress oxydant. Le stress oxydant joue un rôle central dans la physiopathologie de la MP, mais les mécanismes impliqués dans le contrôle de ce stress dans les cellules dopaminergiques ne sont pas totalement élucidés. De nombreuses études montrent que les sélénoprotéines jouent un rôle central dans le contrôle de l'homéostasie redox et la protection cellulaire, mais la contribution précise des membres de cette famille de protéines au cours des maladies neurodégénératives est encore peu connue. Des études antérieures de l’Unité ont permis de découvrir le rôle essentiel d’une nouvelle sélénoprotéine, la sélénoprotéine T (SelT) dans les processus de différenciation neuronale, mais le rôle de cette sélénoprotéine dans les processus neurodégénératifs n’était pas connu. Nous avons montré d'abord que la SelT dont l’invalidation génétique est létale pendant l'embryogenèse, exerce une puissante activité oxydoréductase de type thiorédoxine. Dans un modèle cellulaire de neurones dopaminergiques, représenté par les cellules de neuroblastome SH-SY5Y, la modification de l’expression de la SelT affecte le niveau du stress oxydant et la survie cellulaire. Le traitement de souris sauvages par des neurotoxines ciblant les neurones dopaminergiques telles que le 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (MPTP) ou la roténone induit une expression massive de la SelT dans la voie nigro-striée, suggérant que la SelT pourrait protéger ces neurones dans les conditions de dégénérescence. En revanche, ce même traitement administré chez les souris invalidées pour la SelT dans le cerveau provoque un syndrome parkinsonien, avec apparition de symptômes moteurs confirmant donc que la présence de la SelT doit participer à la protection des neurones dopaminergiques dans des conditions mimant la MP. Les symptômes moteurs observés sont associés à un stress oxydant et une dégénérescence marquée des neurones dopaminergiques. De même, nous avons observé une diminution de la forme active de la tyrosine hydroxylase, ce qui se traduit par des taux de dopamine réduits dans le striatum des souris invalidées et traitées par les neurotoxines. Ces données montrent que la SelT est essentielle à la survie et à la fonctionnalité des neurones dopaminergiques in vitro et in vivo dans les conditions de neurodégénérescence mimant la MP. Enfin, chez les patients souffrant de la MP, nous avons observé une augmentation considérable de la SelT au niveau du caudate-putamen mais pas d’autres structures cérébrales. L’ensemble de ces résultats révèle l'activité d'une nouvelle enzyme de type thiorédoxine qui protège les neurones dopaminergiques contre le stress oxydant et empêche l’apparition précoce de symptômes moteurs sévères chez les modèles animaux de la MP. Nos données indiquent que des sélénoprotéines telles que la SelT dont les taux sont élevés chez des parkinsoniens, jouent un rôle crucial dans la protection des neurones dopaminergiques contre le stress oxydant et la mort cellulaire ouvrant ainsi la voie au développement de nouvelles stratégies de neuroprotection ciblant ces protéines dans la MP. / Neurodegenerative diseases are progressive pathologies that affect the nervous system, causing the death of nerve cells. The best known and most frequent are Alzheimer's and Parkinson's disease, but there are others. All these diseases are characterized by the progressive loss of neurons of the nervous system, leading to cognitive, motor or perceptual complications. Parkinson's disease (PD) is caused by the degeneration of dopaminergic neurons of the substantia nigra and their nerve endings that normally release dopamine into the striatum. The two main risk factors common to neurodegenerative diseases are age and oxidative stress. Oxidative stress plays a central role in the pathophysiology of PD, but the mechanisms involved in controlling this stress in dopaminergic cells are not fully elucidated. Many studies show that selenoproteins play a central role in the control of redox homeostasis and cell protection, but the precise contribution of members of this family of proteins during neurodegenerative diseases is still unknown. Previous studies performed in our laboratory have uncovered the essential role of a new selenoprotein, selenoprotein T (SelT) in the processes of neuronal differentiation, but the role of this selenoprotein in neuroprotection was not known. We first showed that SelT, whose gene knock-out is lethal during embryogenesis, exerts a potent thioredoxin-like oxidoreductase activity. In a cellular model of dopaminergic neurons, represented by SH-SY5Y neuroblastoma cells, modification of SelT expression affects the level of oxidative stress and cell survival. Treatment of wild-type mice by neurotoxins targeting dopaminergic neurons such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone induced massive expression of SelT in the nigro-striatal system, suggesting that SelT could protect these neurons under conditions of degeneration. On the other hand, this same treatment given in mice invalidated for SelT in the brain caused a parkinsonian syndrome with the appearance of motor symptoms, thus confirming that the presence of SelT must participate in the protection of dopaminergic neurons under conditions mimiking PD. The observed motor symptoms are associated with oxidative stress and marked degeneration of dopaminergic neurons. Similarly, we observed a decrease in the active form of tyrosine hydroxylase, resulting in reduced dopamine levels in the striatum of invalidated and neurotoxin-treated mice. These data show that SelT is essential for the survival and functionality of dopaminergic neurons in vitro and in vivo under the conditions of neurodegeneration mimicking PD. Finally, in patients with PD, we observed a considerable increase in SelT levels in the caudate-putamen but not in other cerebral structures. Together, these results uncovered the activity of a novel thioredoxin-like enzyme that protects dopaminergic neurons against oxidative stress and prevents the early onset of severe motor symptoms in animal models of PD. Our data indicate that selenoproteins such as SelT, whose levels are increased in PD play a crucial role in protecting dopaminergic neurons against oxidative stress and cell death, thus paving the way for the development of new neuroprotection strategies targeting these proteins in PD.
|
126 |
Etude des mécanismes cellulaires et moléculaires impliqués dans les effets neuroprotecteurs du gliopeptide OctaDecaNeuropeptide (ODN) dans un model murin de la Maladie de Parkinson / Study of molecular and cellular mechanisms involved in tne neuroprotective effects of Octadecaneuropeptide (ODN) in a murine model of Parkinson's diseaseBahdoudi, Seyma 28 November 2017 (has links)
La maladie de Parkinson (MP) est un trouble neurodégénératif caractérisé par une perte progressive de neurones dopaminergiques (DA) de la substance noire pars compacta (SNpc). Différents mécanismes sont associés à la neuropathogénèse de la MP et en particulier le dysfonctionnement de la chaîne respiratoire mitochondriale, le stress oxydatif, l’apoptose et les processus neuro-inflammatoires. L'octadécaneuropeptide (ODN) est un peptide dérivé du diazepam-binding inhibitor (DBI) exprimé par les cellules astrogliales, qui exerce une action neuroprotectrice dans un modèle cellulaire in vitro de la MP. A ce jour, aucune étude in vivo n’a été réalisée, afin de déterminer si les données obtenues sur les modèles cellulaires in vitro peuvent être transposées in vivo. Le projet de cette thèse consiste ainsi à mettre en évidence l’action protectrice de l’ODN sur la survie des neurones DA de la SNpc dans un modèle murin de la MP et à rechercher les conséquences de l’invalidation du gène du précurseur de l’ODN (DBI) sur la vulnérabilité des neurones DA. Les résultats obtenus montrent qu’une seule injection intra-cérébroventriculaire d’une faible quantité d’ODN (10 ng), 1 h après la dernière administration systémique de 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (MPTP) prévient significativement la perte des neurones DA dans la substance noire et la dégénérescence de leurs prolongements nerveux vers le striatum comme mesuré par des marquages et des mesures d’expression de la tyrosine hydroxylase. Cet effet neuroprotecteur de l’ODN est accompagné par une réduction du nombre d’astrocytes réactifs, une forte inhibition de l'expression de gènes pro-inflammatoires tels que les interleukines (IL) IL-1β et IL-6, et tumor necrosis factor-α. De plus, l'ODN bloque l'inhibition du gène anti-apoptotique Bcl-2 et la stimulation des gènes pro-apoptotiques Bax et caspase-3, induite par le MPTP dans la SNpc et le striatum. L'ODN réduit également l’accumulation d'espèces réactives de l'oxygène (ROS) et de produits d'oxydation lipidique dans les neurones DA. Par ailleurs, les souris knock-out DBI (DBI-/-) sont plus vulnérables que les animaux sauvages (DBI+/+) vis-à-vis de la neurotoxicité du MPTP. L’absence de production d’ODN endogène, chez les souris DBI-/- parkinsoniennes, augmente les dommages cellulaires induits par le MPTP, la réactivité gliale, les taux de ROS, l’expression de cytokines pro-inflammatoires et l'activité de la caspase-3 dans la région nigro-striée. L’ensemble de ces résultats montre que le gliopeptide ODN exerce un puissant effet neuroprotecteur contre la dégénérescence des neurones DA de la SNpc induite par le MPTP, chez la souris. Cette action protectrice met en jeu des mécanismes impliquant l’inhibition des processus neuro-inflammatoires, oxydatifs et apoptotiques. D’autre part, la déficience en ODN potentialise les effets délétères du MPTP, suggérant que ce peptide joue un rôle clé lors de la réponse à un stress cellulaire. / Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of loss of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc). Different mechanisms are associated with the neuropathogenesis of PD including dysfunction of the mitochondrial respiratory chain, oxidative stress, apoptosis and neuroinflammatory processes. Octadecaneuropeptide (ODN) is a diazepam-binding inhibitor (DBI)-derived peptide, expressed by astrocytes, which protects neurons against oxidative cell damages and apoptosis in an in vitro model of PD. Nevertheless, its protective action in vivo has never been investigated. Therefore, the aim of the project of this thesis was to investigate whether intracerebroventricular (i.c.v) injection of ODN could prevent DA neuron degeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, and to explore the vulnerability of ODN precursor knockout (DBI KO) mice to MPTP-induced neurotoxicity. The results show that a single i.c.v injection of 10 ng/μl ODN, 1 h after the last systemic administration of MPTP, prevents the reduction of the number of tyrosine hydroxylase (TH)-positive cell bodies and fibers in the SNpc and striatum, respectively. Immunofluorescence imaging, Western blot analysis and Q-PCR studies revealed that ODN totally abolished MPTP-induced decrease of TH positive cells, mRNA expression and protein levels. This neuroprotective effect of ODN is accompanied by a reduction in the number of reactive astrocytes, an inhibition of the expression of pro-inflammatory genes such as interleukins (IL) IL-1β and IL-6, and a decrease of tumor necrosis factor -α. In addition, ODN blocks the inhibition of the anti-apoptotic Bcl-2 gene and the stimulation of Bax and caspase-3 expression induced by MPTP in the SNpc and striatum. ODN also reduces the accumulation of reactive oxygen species (ROS) and lipid oxidation products in DA neurons. Furthermore, DBI-/- mice exhibited more vulnerability to MPTP than wild-type animals (DBI+/+). Thus, ODN KO mice are more sensitive to MPTP-induced inflammatory and oxidative brain damages, suggesting that the endogenous OD may also be neuroprotective. These results indicate that, based on its anti-oxidative, anti-inflammatory and anti-apoptotic effect, the gliopeptide ODN could lead to the development of effective therapeutic agents for the treatment of cerebral injuries involving oxidative neurodegeneration.
|
127 |
Etudes in vitro et in vivo de l'effet neuroprotecteur d'un peptide dérivé de la sélénoprotéine T, le PSELT, dans un modèle de la maladie de Parkinson. / In vitro and in vivo study of the neuroprotective effect of a selenoprotein T-derived peptide, PSELT, in a model of Parkinson diseaseAlsharif, Ifat 27 April 2018 (has links)
Les maladies neurodégénératives telles que la maladie d'Alzheimer, la maladie de Parkinson et la maladie de Huntington sont des pathologies progressives qui affectent le système nerveux, conduisant à la mort de certaines cellules nerveuses. Toutes ces maladies se caractérisent par la perte progressive de neurones dans des régions plus ou moins localisées du système nerveux, entraînant des complications cognitives, motrices ou perceptives. La MP est caractérisée par une dégénérescence sélective et progressive des neurones dopaminergiques situés dans la substance noire pars compacta (SNc), et de leurs terminaisons nerveuses qui normalementlibèrent la dopamine dans le striatum. Bien que les causes exactes de la MP soient inconnues, de nombreuses études ont démontré le rôle important du stress oxydatif dans la dégénérescence des neurones dopaminergiques. D’ailleurs, un niveau élevé de radicaux libres est observé dans le cerveau de patients post-mortem. Ces observations suggèrent que les protéines qui jouent un rôle dans la protection des neurones contre les effets du stress oxydatif peuvent représenter des cibles thérapeutiques intéressantes. En effet, pour maintenir l'équilibre d'oxydo-réduction, les cellules recrutent plusieurs enzymes réductrices dont des membres de la famille des sélénoprotéines. Des résultats obtenus dans notre laboratoire ont montré que la sélénoprotéine T (SelT), une nouvelle sélénoprotéine identifiée dans les cellules nerveuses dans notre laboratoire, est fortement exprimée dans les conditions de dégénérescence des neurones suite à un stress oxydant, et exerce un rôle neuroprotecteur. Ce rôle est assuré par son site actif contenant une cystéine et une sélénocystéine. Le but de ce travail de thèse était de valider l’utilisation d’un peptide nommé PSELT contenant le coeur actif de la SelT en tant que traitement neuroprotecteur dans la MP. Le traitement des cellules de neuroblastome SH-SY5Ypar le peptide PSELT réduit significativement les niveaux des radicaux libres et stimule la survie cellulaire en inhibant l’apoptose. Le PSELT semble traverser la membrane plasmique pour exercer son effet. In vivo, l’administration intranasale du PSELT protège les neurones et les fibres dopaminergiques dans un modèle de la MP chez la souris traitée par le 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (MPTP). Le peptide PSELT augmente le taux de la tyrosine hydroxylase et inhibe l’apoptose, ce qui aboutit à une amélioration des troubles moteurs induits par le MPTP chez les animaux. L’ensemble de ces résultats montrent pour la première fois qu’un peptide issu de la SELT, le PSELT, est capable de protéger les neurones dopaminergiquesin vitro et in vivo et d’améliorer l’activité motrice des animaux modèles de la MP, ouvrant la voie au développement d’une nouvelle thérapie de neuroprotection pour la MP. / Résumé en anglais non fourni
|
128 |
Etude de la coopération de l'alpha-synucléine et de LRRK2 dans les dysfonctions mitochondriales dans la Maladie de Parkinson / Alpha-synuclein and LRRK2’s Cooperation in Mitochondrial Dysfunctions in Parkinson’s DiseaseGardier, Camille 07 November 2019 (has links)
Les protéines alpha-synucléine (αsyn) et « Leucine-Rich Repeat Kinase 2 » (LRRK2), jouent toutes deux un rôle majeur dans la physiopathologie des formes sporadiques et génétiques de la maladie de Parkinson (MP). En particulier, la mutation G2019S de LRRK2, située dans son domaine kinase, est la cause la plus fréquente de formes génétiques de la MP. Il a été suggéré que l’αsyn et LRRK2 agiraient de concert pour induire la neurodégénérescence des neurones dopaminergiques de la substance noire pars compacta (SNpc) dans cette maladie. Dans notre laboratoire, il a été montré qu’en effet LRRK2 G2019S pouvait potentialiser la mort des neurones dopaminergiques induite par l’αsyn dans la SNpc de rats, confirmant l’existence d’une interaction fonctionnelle entre les deux protéines. De plus, il est connu depuis plusieurs années que les dysfonctionnements mitochondriaux joueraient un rôle central dans la MP. De nombreuses études ont montré que les deux protéines individuellement pouvaient entraîner des dysfonctionnements de cet organite. Notre hypothèse est donc que l’interaction fonctionnelle entre l’αsyn et LRRK2 pourrait passer par une action commune sur la mitochondrie. Nous avons ainsi pu montrer in vitro, dans des cultures primaires de neurones de rat surexprimant l’αsyn et LRRK2, que LRRK2 G2019S, mais pas sa forme sauvage (WT) ni sa forme sans activité kinase (DK, Dead Kinase) augmentait significativement le nombre de neurones présentant un marquage pathologique de l’αsyn (phospho-S129), sans induire de mort cellulaire. Au niveau cellulaire et moléculaire, une diminution significative du taux de production d’ATP mitochondrial a été mise en évidence dans les cellules co-exprimant LRRK2 (WT, G2019S, et encore plus DK) avec l’αsyn par rapport à celles exprimant l’αsyn seule, ceci sans différence dans la quantité totale d’ATP. Les mitochondries des neurones co-exprimant LRRK2 et l’αsyn parcouraient également de plus longues distances le long des neurites que celles des neurones exprimant uniquement l’αsyn. Pour résumer, dans ce modèle in vitro, LRRK2 augmente donc l’accumulation somatique d’une forme pathologique de l’αsyn, d’une manière dépendante de son activité kinase. Dans ces conditions, les mitochondries sont capables de maintenir leur homéostasie, notamment en adaptant leur production d’ATP. Cela semble indiquer l’existence d’un stress mitochondrial modéré, induit par la co-expression de l’αsyn et de LRRK2. / The proteins alpha-synuclein (αsyn) and Leucine-Rich Repeat Kinase 2 (LRRK2) both play major roles in the physiopathology of sporadic and genetic forms of Parkinson’s Disease (PD). In particular, the G2019S mutation of LRRK2, located in its kinase domain, is the most prevalent cause of genetic forms of PD. It has been suggested that αsyn and LRRK2 could act together to induce the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the pathogenesis of this disease. In our laboratory, it has been shown that G2019S LRRK2 could increase the dopaminergic cell loss induced by αsyn in the SNpc of rats, confirming the existence of a functional interaction between the two proteins. Moreover, it has been known for years that mitochondrial dysfunction played a major role in PD. Many studies showed that both LRRK2 and αsyn induced mitochondrial dysfunction. Therefore, we hypothesized that the functional interaction between αsyn and LRRK2 could take place through a common effect on mitochondria. We showed in vitro, in primary rat neurons, that G2019S LRRK2, but not the wild type (WT) form nor the dead kinase mutant (DK), significantly increased the number of neurons expressing a pathological form of αsyn (phospho-S129). This was not associated with any cell loss. At the cellular and molecular levels, there was a significant decrease in the mitochondrial ATP production rate in cells co-expressing LRRK2 (WT, G2019S and even more pronounced with DK) with αsyn, without any change in total ATP levels. The mean distance travelled by mitochondria along neurites was higher in neurons co-expressing αsyn and LRRK2 than in neurons only expressing αsyn. To summarize, in this in vitro model LRRK2 increases the somatic accumulation of a pathologic form of αsyn, in a kinase-dependent manner. In these conditions, mitochondria are able to maintain their homeostasis, in particular by adapting their ATP production rate. This seems to indicate a moderate mitochondrial stress induced by the co-expression of αsyn and LRRK2.
|
129 |
Theoretical and experimental considerations of selective vulnerability In Parkinson's diseaseBurke, Samuel 11 1900 (has links)
Les maladies neurodégénératives sont typiquement caractérisées en fonction de leurs symptômes et des observations pathologiques effectuées après le décès. Les symptômes spécifiques à la maladie sont également normalement associés aux dysfonctionnements et à la dégénérescence de certaines sous- populations spécifiques de neurones dans le système nerveux. La maladie de Parkinson (MP) est une maladie neurodégénérative principalement caractérisée par des symptômes moteurs dus à la dégénérescence spécifique des neurones dopaminergiques (DA) de la substantia nigra pars compacta (SNpc/SNc). Il semble cependant que les neurones DA de la SNc ne soient pas la seule population de neurones qui dégénère dans la MP. L'analyse post-mortem, l'imagerie in vivo et les symptômes cliniques démontrent que le dysfonctionnement et la dégénérescence se produisent dans plusieurs autres régions du système nerveux, incluant par exemple des neurones noradrénergiques (NA) du locus coeruleus (LC), des neurones sérotoninergiques des noyaux du raphé et des neurones cholinergiques du noyau moteur dorsal du nerf vague (DMV) et du noyau pédonculopontin.
Comme d'autres maladies neurodégénératives, la MP est causée par plusieurs facteurs, tant génétiques qu'environnementaux. De nombreuses observations suggèrent que ces facteurs soient associés au dysfonctionnement de plusieurs systèmes ou fonctions cellulaires incluant la production d’énergie par la mitochondrie, l’élimination de protéines dysfonctionnelles par le protéasome et le lysosome, la régulation de l’équilibre entre la production d'espèces oxydatives réactives et les mécanismes antioxydants, la régulation des niveaux de calcium intracellulaire et l’inflammation. Il semble donc que le dysfonctionnement de ces facteurs converge pour provoquer la dégénérescence neuronale dans le contexte du vieillissement. Ce qui rend les neurones de certaines régions du système nerveux intrinsèquement plus vulnérables aux facteurs associés à la MP est une question fondamentale qui n’est pas résolue pour le moment.
Les travaux de cette thèse sont basés sur l’hypothèse proposant que cette vulnérabilité sélective découle de propriétés communes retrouvées chez les neurones vulnérables. En particulier, les neurones vulnérables auraient en commun d’être des neurones de projections dotés d’un axone complexe qui projette sur de longues distances, formant un nombre très élevé de terminaisons axonales sur de vastes territoires du système nerveux. De plus, ces neurones présenteraient des propriétés physiologiques distinctives, incluant notamment une décharge autonome (pacemaker). Ensemble, ces caractéristiques pourraient contribuer à placer ces neurones dans des conditions de fonctionnement aux limites de leur capacités
bioénergétiques et homéostatiques, rendant difficile toute adaptation aux dysfonctionnements cellulaires associés au vieillissement et causés par les facteurs de risques de la MP.
Dans cette thèse, je présenterai une revue systématique de la littérature sur la perte de neurones dans le cerveau des personnes atteintes de la maladie de Parkinson, montrant que l'identité neurochimique précise des neurones qui dégénèrent dans la maladie de Parkinson, et l'ordre temporel dans lequel cela se produit, n’est pas clair. Cependant, en analysant les points de vue présentés dans les publications citant cette revue, nous avons remarqué que la majorité de ceux-ci ne reflètent pas le message central de notre publication. Puisque l’identification de l’identité des neurones vulnérables et non vulnérables à la MP est fondamentale pour le développement de théories et hypothèses sur les causes de la MP, nous suivons cette première publication avec une lettre réaffirmant l'importance de faire face aux problèmes identifiés dans notre revue.
Nous présentons ensuite des données in vitro montrant que les neurones vulnérables à la MP, comparés à ceux qui sont moins vulnérables, ont une capacité intrinsèque à développer des champs axonaux plus importants et plus complexes, avec un nombre plus élevé de sites actifs de libération de neurotransmetteurs. De plus, nous constatons que ces observations sont corrélées à une vulnérabilité plus élevée face à un stress oxydatif pertinent pour la MP. Ces données sont en accord avec l'hypothèse selon laquelle le domaine axonal, et en particulier le nombre de sites de libération de neurotransmetteurs par neurone, est un facteur important qui contribue à rendre un neurone sélectivement vulnérable dans le contexte de la MP.
Enfin, nous présentons une méthode d’analyse d’image open-source visant à aider les biologistes et les neuroscientifiques à automatiser la quantification du nombre de neurones dans des cultures primaires de neurones, telle qu’utilisée dans les travaux de cette thèse. Nous proposons que cet algorithme simple — mais robuste — permettra aux biologistes d'automatiser le comptage des neurones avec une grande précision, quelque chose de difficile à effectuer avec les autres approches open-source disponibles présentement.
Nous espérons que les travaux présentés dans cette thèse permettront de contribuer à raffiner les théories visant à expliquer l’origine de la MP et à terme, de développer de nouvelles approches thérapeutiques. / Neurodegenerative diseases are typically characterized based on their symptoms, and pathological factors identified after death. The disease-specific symptoms are due to the dysfunction and degeneration of specific subpopulations of neurons, which cause dysfunction in particular brain functions. Parkinson's disease (PD) is a neurodegenerative disease primarily characterized by motor symptoms due to the specific degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SNpc/SNc): a population of neurons essential for motor control. SNc DA neurons are, however, not the only population of neurons that degenerate in PD. Post-mortem analysis, in vivo imaging, and clinical symptoms demonstrate that dysfunction and degeneration occur in several other neuronal nuclei. These include, but are not limited to, noradrenergic (NA) locus coeruleus (LC) neurons, serotonin neurons of the raphe nuclei, and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV) and pedunculopontine nucleus.
Like other neurodegenerative diseases, PD is linked to several risk factors, both genetic and environmental. The evidence suggests that these risk factors are associated with the dysfunction in systems of cellular bioenergetics (including mitochondrial function); proteostatic homeostasis; endolysosomal function; an imbalance between the production of reactive oxidative species (ROS), and antioxidant mechanisms; calcium homeostasis; alpha-synuclein misfolding; and neuroinflammation. Consequently, together with aging, these risk factors converge on causing the selective degeneration of "PD-vulnerable" nuclei. What makes these neurons intrinsically vulnerable to PD-associated risk factors is a fundamental question — and understanding these neurons will reveal biological mechanisms that we can target to protect these cells from degeneration.
Our best hypotheses to explain why these neurons are based on the observations that most PD- vulnerable neurons are long-range projection neuromodulatory neurons sharing common characteristics: projecting to voluminous territories, having very long and highly branched unmyelinated axonal domains with vast numbers of neurotransmitter release sites, and exhibiting a unique physiology such as pacemaker firing. Taken together, this suggests that these neurons function at the tail-end of their bioenergetic and homeostatic capacity, unable to tolerate any further demands, such as those incurred in the presence of risk factors associated with PD.
In this thesis, I will present a systematic review on the literature on purported cell loss in PD brains, showing that — given the actual primary evidence — the precise neurochemical identity of neurons that degenerate in PD, and the temporal order of this degeneration, is far less clear than described by most publications. This review — at the time of writing — has gone on to be highly cited. However, analyzing
the claims made in publications citing this review, we discover that the majority of claims do not reflect the core message of our publication. Since the identity of PD-vulnerable and non-PD-vulnerable neurons is fundamental to theory and hypotheses when trying to understand PD, we follow this first publication with a letter restating the importance to address our observations.
We then present in vitro data showing that classically PD-vulnerable neurons, when compared to non-PD vulnerable neurons, have an intrinsic capacity to develop larger and more complex axonal domains, with higher numbers of active neurotransmitter release sites. Moreover, we find that these observations correlate to elevated vulnerability to PD-relevant stress assays. These data provide additional support for the hypothesis that the axonal domain — and in particular — the number of active neurotransmitter sites per neuron, is a cell-autonomous factor rendering a neuron selectively vulnerable in the context of PD.
Finally, we present an open-source tool to support biologists and neuroscientists in automating the quantification of neuron numbers in medium-throughput primary cell cultures. Where the application of other open-source solutions is either too simplistic for the use-case or technically challenging to implement, this simple — yet robust algorithm — allows biologists with limited computational nous to automate neuron counting with high precision.
We hope that the work presented in this thesis will contribute to the refinement of theories aimed at explaining the origin of PD and, ultimately, to the development of new therapeutic approaches.
|
130 |
Implication du système gabaergique et des peptides neuromodulateurs dans la survenue des dyskinésies induites par la lévodopaTamim, Mohamed Khalil 16 April 2018 (has links)
Ce travail explore certains mécanismes moléculaires impliqués dans la genèse des dyskinésies induites par la dopa thérapie. Nos travaux ont été effectués sur des échantillons de cerveaux de singes parkinsoniens ayant développé des complications motrices suite au traitement à la Lévodopa. Nos résultats montrent l'absence de corrélation entre les niveaux striataux de l'ARNm de la préprotachykinine et la survenue des dyskinésies et l'existence d'un lien de causalité entre l'augmentation des niveaux striataux des ARNm de la préproenképhaline et de la préprodynorphine ainsi que l'augmentation de la densité des récepteurs GABA-A au niveau des noyaux gris centraux et la physiopathologie de ces dyskinésies. Les traitements adjuvants avec le Ro 61-8048 , l'acide docosahéxaénoïque et le CI-I041 en association avec la Lévodopa, permettent de corriger certains paramètres biochimiques impliqués , dans la genèse de ces complications motrices et de prévenir ces dyskinésies sur le plan comportemental contrairement au Naltrexone qui les a exacerbées.
|
Page generated in 0.0888 seconds