• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioactive coatings to control marine biofouling

Tasso, Mariana Patricia 30 November 2009 (has links) (PDF)
The colonization of immersed surfaces by a myriad of marine organisms is a complex, multi-stage, species-specific process giving rise to economic and environmental costs. This unwanted accumulation of organisms in the marine environment, called biofouling, has been attacked from different fronts, going from the ‘problem-elimination-as-problem-solving’ strategy (essentially through the use of biocides) to more elaborated and environmentally-friendly options based on the principle of ‘non-stick’ or ‘easy foul-release’ surfaces, which do not jeopardize marine life viability. Several marine organisms rely on proteinaceous adhesives to secure a holdfast to surfaces. Proteolytic enzymes have been demonstrated to be effective agents against settlement and settlement consolidation onto surfaces of marine bacteria, algae, and invertebrates, their proposed mode-of-action being the enzymatic degradation of the proteinaceous components of the adhesives. So far, however, the evidence remains inconclusive since most of the published investigations refer to commercial preparations where the enzyme is mixed with other components, like additives, which obviously act as additional experimental variables. This work aims at providing clear, conclusive evidence about the potential of serine proteases to target the adhesives produced by a group of model marine biofoulers. The strategy towards the goal consisted in the preparation and characterization of maleic anhydride copolymer nanocoatings modified by a surface-bound enzyme, Subtilisin A, the active constituent of the commercial preparations reported as effective against biofouling. The enzyme-containing maleic anhydride copolymer films were characterized (enzyme surface concentration, activity, stability, roughness and wettability) and thereafter tested in biological assays with three major biofoulers: spores of the green alga Ulva linza, cells of the pennate diatom Navicula perminuta, and cyprid larvae of the barnacle Balanus amphitrite. The purpose of the biological assays was to elucidate the efficacy of the immobilized catalyst to discourage settlement and/or to facilitate removal of these organisms from the bioactive layers. Results confirmed the initial hypotheses related to the enzymatic degradation of the biological adhesives: the immobilized protease was effective at reducing the adhesion strength of Ulva spores and Navicula diatoms in a manner that correlated with the enzyme activity and surface concentration, and deterred settlement of Balanus amphitrite barnacle cyprids even at the lowest surface activity tested. By facilitating the removal of biofilm-forming diatoms and of spores of the troublesome alga Ulva linza, as well as by interfering with the consolidation of adhesion of the calcareous Balanus amphitrite macrofouler, the enzyme-containing coatings here disclosed are considered to constitute an appealing and promising alternative to control marine biofouling without jeopardizing marine life.
2

Bioactive coatings to control marine biofouling

Tasso, Mariana Patricia 12 November 2009 (has links)
The colonization of immersed surfaces by a myriad of marine organisms is a complex, multi-stage, species-specific process giving rise to economic and environmental costs. This unwanted accumulation of organisms in the marine environment, called biofouling, has been attacked from different fronts, going from the ‘problem-elimination-as-problem-solving’ strategy (essentially through the use of biocides) to more elaborated and environmentally-friendly options based on the principle of ‘non-stick’ or ‘easy foul-release’ surfaces, which do not jeopardize marine life viability. Several marine organisms rely on proteinaceous adhesives to secure a holdfast to surfaces. Proteolytic enzymes have been demonstrated to be effective agents against settlement and settlement consolidation onto surfaces of marine bacteria, algae, and invertebrates, their proposed mode-of-action being the enzymatic degradation of the proteinaceous components of the adhesives. So far, however, the evidence remains inconclusive since most of the published investigations refer to commercial preparations where the enzyme is mixed with other components, like additives, which obviously act as additional experimental variables. This work aims at providing clear, conclusive evidence about the potential of serine proteases to target the adhesives produced by a group of model marine biofoulers. The strategy towards the goal consisted in the preparation and characterization of maleic anhydride copolymer nanocoatings modified by a surface-bound enzyme, Subtilisin A, the active constituent of the commercial preparations reported as effective against biofouling. The enzyme-containing maleic anhydride copolymer films were characterized (enzyme surface concentration, activity, stability, roughness and wettability) and thereafter tested in biological assays with three major biofoulers: spores of the green alga Ulva linza, cells of the pennate diatom Navicula perminuta, and cyprid larvae of the barnacle Balanus amphitrite. The purpose of the biological assays was to elucidate the efficacy of the immobilized catalyst to discourage settlement and/or to facilitate removal of these organisms from the bioactive layers. Results confirmed the initial hypotheses related to the enzymatic degradation of the biological adhesives: the immobilized protease was effective at reducing the adhesion strength of Ulva spores and Navicula diatoms in a manner that correlated with the enzyme activity and surface concentration, and deterred settlement of Balanus amphitrite barnacle cyprids even at the lowest surface activity tested. By facilitating the removal of biofilm-forming diatoms and of spores of the troublesome alga Ulva linza, as well as by interfering with the consolidation of adhesion of the calcareous Balanus amphitrite macrofouler, the enzyme-containing coatings here disclosed are considered to constitute an appealing and promising alternative to control marine biofouling without jeopardizing marine life.
3

Haftvermittlersysteme für Holzfurnier/Biopolyethylen-Verbundwerkstoffe

John, Rico 29 January 2021 (has links)
Die vorliegende Arbeit befasst sich mit der Entwicklung von Haftvermittlersystemen für eine verbesserte Faser-Matrix-Adhäsion in Holzfurnier/Biopolyethylen-Verbundwerkstoffen. Dabei wird zunächst die Charakterisierung der zu modifizierenden Rotbuchenfurnieroberfläche sowie die Herstellung von Holzfurnier/Biopolyethylen-Verbundwerkstoffen ohne Haftvermittler vorgestellt. Um die Kompatibilität der beiden Werkstoff zu erhöhen, wurden verschiedene Konzepte zur Haftförderung entwickelt und appliziert. Der Beschichtungsprozess von unterschiedlichen Formulierung wie Poly(N-vinylformamid-co-vinylamin) und strukturell verschiedenen Maleinsäureanhydridcopolymeren auf dem Holzfurnier wurde systematisch untersucht. Die Charakterisierung der beschichteten Rotbuchenfurnieroberfläche erfolgte unter anderen mit Hilfe von Kontaktwinkelmessungen, Röntgenphotoelektronenspektroskopie und elektronen-mikroskopischen Aufnahmen. Die Anwendung der haftvermittelnden Polymere auf dem Holzwerkstoff ermöglicht die Herstellung von Holzfurnier/Biopolyethylen-Verbundwerkstoffen mit erhöhten mechanischen Kennwerten wie beispielsweise dem E-Modul und der Zugfestigkeit. Das Konzept der simultanen Zwillingspolymerisation wurde ebenfalls zur Haftförderung zwischen den Ausgangsmaterialien eingesetzt. Dafür wurden verschiedene neue, funktionale Zwillingsmonomere synthetisiert und anschließend deren Polymerisationsverhalten und die resultierenden Hybridmaterialien charakterisiert. Durch Applikation von verschiedenen Zwillingsmonomermischungen auf der Holzfurnieroberflächen konnten in Kombination mit Biopolyethylen kompatible und stabile Verbundwerkstoffe mit erhöhten mechanischen Eigenschaften erzielt werden.

Page generated in 0.1133 seconds