Spelling suggestions: "subject:"manakin"" "subject:"bulgakov""
1 |
Realisation of holonomy algebras on pseudo-Riemannian manifolds by means of Manakov operatorsTsonev, Dragomir January 2013 (has links)
In the present thesis we construct a new class of holonomy algebras in pseudo-Riemannian geometry. Starting from a smooth connected manifold M, we consider its (1;1)-tensor fields acting on the tangent spaces. We then prove that there exists a class of pseudo- Riemannian metrics g on M such that the (1;1)-tensor fields are g-self adjoint and their centralisers in the Lie algebra so(g) are holonomy algebras for the Levi-Civita connection of g. Our construction is elaborated with the aid of Manakov operators and holds for any signature of the metric g.
|
2 |
Ondes scélérates complexes dans les fibres optiques / Complex rogue wave in the fiber opticsFrisquet, Benoit 24 March 2016 (has links)
Ce manuscrit de thèse présente l’étude d’instabilités non-linéaires et la génération d’ondes scélérates complexes liées à la propagation de la lumière dans des fibres optiques standards des télécommunications optiques. Un rappel est tout d’abord présenté sur les phénomènes physiques linéaires et non-linéaires impliqués et qui peuvent présenter une analogie directe avec le domaine de l’hydrodynamique. Les différentes formes d’ondes scélérates liées au processus d’instabilité de modulation, aussi appelées « breathers », sont alors présentées, elles sont obtenues par la résolution de l’équation de Schrödinger non-linéaire. À partir de ces solutions exactes, divers systèmes expérimentaux sont alors conçus par simulation numérique à partir de deux méthodes d’excitation d’ondes scélérates. La première est une génération exacte à partir des solutions analytiques en effectuant une mise en forme spectrale en intensité et en phase d’un peigne de fréquence optique. La seconde méthode est basée sur des conditions initiales approchées avec des ondes continues modulées sinusoïdalement. Les mesures expérimentales réalisées avec ces deux méthodes démontrent parfaitement la génération d’ondes scélérates complexes (solutions d’ordre supérieur du système) issues de la superposition non-linéaire ou collisions de « breathers » de premier ordre. Enfin, nous avons également étudié un système non-linéaire équivalent au modèle de Manakov, qui fait intervenir la propagation de deux ondes distinctes avec des polarisations orthogonales dans une fibre optique. L’analyse de stabilité et des simulations numériques de ce système multi-variable mettent en évidence un nouveau régime d’instabilité de modulation vectorielle ainsi que de nouvelles solutions d’ondes scélérates noires et couplées en polarisation. Un nouveau système expérimental mis en place a permis de confirmer ces prédictions théoriques avec un excellent accord quantitatif. / This manuscript presents the generation of complex rogue waves related to nonlinear instabilities occurring through the propagation of light in standard optical fibers. Linear and nonlinear physical phenomena involved are first listed, in particular some of them by analogy with the field of hydrodynamics. The different forms of rogue waves induced by the modulation instability process are then presented. They are also known as "breathers", and they are obtained by solving the nonlinear Schrödinger equation. From these exact solutions, various experimental systems were designed by means of numerical simulations based on two rogue-wave excitation methods. The first one is an exact generation of mathematical solutions based on the spectral shaping of an optical frequency comb. The second method uses approximate initial conditions with a simple sinusoidal modulation of continuous waves. For both cases, experimental measurements demonstrate the generation of complex rogue waves (i.e., higher-order solutions of the system) arising from the nonlinear superposition or collision of first-order breathers. Finally, we also studied a nonlinear fiber system equivalent to the Manakov model, which involves the propagation of two distinct waves with orthogonal polarizations. The stability analysis and numerical simulations of this multi-component system highlight a novel regime of vector modulation instability and the existence of coupled dark rogue-wave solutions. A new experimental system setup was conceived and theoretical predictions are confirmed with an excellent quantitative agreement.
|
3 |
On the Eigenvalues of the Manakov SystemKeister, Adrian Clark 13 July 2007 (has links)
We clear up two issues regarding the eigenvalue problem for the Manakov system; these problems relate directly to the existence of the soliton [sic] effect in fiber optic cables. The first issue is a bound on the eigenvalues of the Manakov system: if the parameter ξ is an eigenvalue, then it must lie in a certain region in the complex plane. The second issue has to do with a chirped Manakov system. We show that if a system is chirped too much, the soliton effect disappears. While this has been known for some time experimentally, there has not yet been a theoretical result along these lines for the Manakov system. / Ph. D.
|
4 |
Analyse de modèles mathématiques pour la propagation de la lumière dans les fibres optiques en présence de biréfringence aléatoireGazeau, Maxime 19 October 2012 (has links) (PDF)
L'étude de la propagation de la lumière dans les fibres optiques monomodes requiert la prise en compte de plusieurs phénomènes compliqués tels que la dispersion modale de polarisation et l'effet Kerr. Il s'est avéré que l'évolution de l'enveloppe lentement variable du champ électrique est bien décrite par un système couplé d'équations de Schrödinger non linéaires à coefficients aléatoires : l'équation de Manakov PMD. Cette équation fait intervenir différentes échelles dont le ratio est donné par un petit paramètre. La première partie de ce travail consiste à étudier le comportement asymptotique de la solution de l'équation de Manakov PMD lorsque ce petit paramètre tend vers zéro. En généralisant la théorie de l'Approximation-Diffusion au cadre de la dimension infinie, on a montré que la dynamique asymptotique est donnée par une équation aux dérivées partielles stochastiques dirigée par un mouvement brownien de dimension trois. Dans une seconde partie, nous proposons un schéma de différences finies de type Crank Nicolson pour cette équation pour lequel nous obtenons un ordre de convergence en probabilité d'ordre 1/2. La discrétisation du bruit doit être implicite afin d'obtenir un schéma conservatif et stable. Enfin la dernière partie est relative à la simulation numérique de la dispersion modale de polarisation et à ses effets sur la propagation et la collision de solitons de Manakov. Dans ce cadre, on propose une méthode de réduction de variance valable pour les équations aux dérivées partielles stochastiques.
|
Page generated in 0.0361 seconds