• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From rifting to collision : the evolution of the Taiwan Mountain Belt

Lester, William Ryan 10 October 2013 (has links)
Arc-continent collisions are believed to be an important mechanism for the growth of continents. Taiwan is one of the modern day examples of this process, and as such, it is an ideal natural laboratories to investigate the uncertain behavior of continental crust during collision. The obliquity of collision between the northern South China Sea (SCS) rifted margin and Luzon arc in the Manila trench subduction zone allows for glimpses into different temporal stages of collision at different spatial locations, from the mature mountain-belt in central-northern Taiwan to the 'pre-collision' rifted margin and subduction zone south of Taiwan. Recently acquired seismic reflection and wide-angle seismic refraction data document the crustal-scale structure of the mountain belt through these different stages. These data reveal a wide rifted margin near Taiwan with half-graben rift basins along the continental shelf and a broad distal margin consisting of highly-extended continental crust modified by post-rift magmatism. Magmatic features in the distal margin include sills in the post-rift sediments, intruded crust, and a high-velocity lower crustal layer that likely represents mafic magmatism. Post-rift magmatism may have been induced by thermal erosion of lithospheric mantle following breakup and the onset of seafloor spreading. Geophysical profiles across the early-stage collision offshore southern Taiwan show evidence the thin crust of the distal margin is subducting at the Manila trench and structurally underplating the growing orogenic wedge ahead of the encroaching continental shelf. Subduction of the distal margin may induce a pre-collision flexural response along the continental shelf as suggested by a recently active major rift fault and a geodynamic model of collision. The weak rift faults may be inverted during the subsequent collision with the continental shelf. These findings support a multi-phase collision model where the early growth of the mountain belt is driven in part by underplating of the accretionary prism by crustal blocks from the distal margin. The wedge is subsequently uplift and deformed during a collision with the continental shelf that involves both thin-skinned and thick-skinned structural styles. This model highlights the importance of rifting styles on mountain-building. / text

Page generated in 0.0455 seconds