Spelling suggestions: "subject:"martial soil""
1 |
Characterization of Fillite as a Planetary Soil Simulant in Support of Rover Mobility Assessment in High-Sinkage/High-Slip EnvironmentsEdwards, Michael 01 January 2015 (has links)
This thesis presents the results of a research program characterizing a soil simulant called Fillite, which is composed of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. Fillite is available in large quantities at a reasonable cost and it is chemically inert. Fillite has been selected by the National Aeronautics and Space Administration (NASA) Glenn Research Center to simulate high-sinkage/high-slip environment in a large test bed such as the ones encountered by the Spirit rover on Mars in 2009 when it became entrapped in a pocket of soft, loose regolith on Mars. The terms high-sinkage and high-slip used here describe the interaction of soils with typical rover wheels. High-sinkage refers to a wheel sinking with little to no applied force while high-slip refers to a spinning wheel with minimal traction.
Standard material properties (density, specific gravity, compression index, Young's modulus, and Poisson's ratio) of Fillite were determined from a series of laboratory tests conducted in general accordance with ASTM standards. Tests were also performed to determine some less standard material properties of Fillite such as the small strain shear wave velocity, maximum shear modulus, and several pressure-sinkage parameters for use in pressure-sinkage models. The experiments include an extensive series of triaxial compression tests, bender element tests, and normal and shear bevameter tests.
The unit weight of Fillite on Earth ranges between 3.9 and 4.8 kN/m3, which is similar to that of Martian regolith (about 3.7 - 5.6 kN/m3) on Mars and close to the range of the unit weight of lunar regolith (about 1.4 - 2.9 kN/m3) on the Moon. The data presented here support that Fillite has many physical and mechanical properties that are similar to what is known about Martian regolith. These properties are also comparable to lunar regolith. Fillite is quite dilatant; its peak and critical angles of internal friction are smaller than those of most other simulants. Smaller shear strength, coupled with much smaller bulk unit weight as compared to other simulants, results in smaller bearing and shearing resistances allowing for better simulation of the intended high-sinkage, high-slip behavior for rover mobility studies.
The results of the normal bevameter tests were used to determine parameters for two models available in the literature - the Bekker model and the New Model of Mobility (N2M) model. These parameters were then used to predict the sinkage of a Spirit rover wheel if the rover were to be used on Fillite. The predicted sinkage of a Spirit rover wheel in Fillite was 84% of the wheel diameter, which was within the observed sinkage of 50 to 90% of the wheel diameter of the Spirit rover on Mars. Shear bevameter tests were also performed on Fillite to assess the shear stresses and shear deformations imparted by wheels under torsional loads. The results compared well to the estimated shear stresses and deformations of Martian soil caused by the wheels of the Spirit rover. When compared to other simulants (e.g. GRC-1), the pressure-sinkage and shear stress-shear deformation behaviors of Fillite confirm that Fillite is more suitable for high-sinkage and high-slip rover studies than other typical simulants derived from natural terrestrial soils and rocks.
|
Page generated in 0.0667 seconds