• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 22
  • Tagged with
  • 53
  • 53
  • 19
  • 18
  • 15
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Machine learning to support physicians in endoscopic examinations with a focus on automatic polyp detection in images and videos / Maschinelles Lernen zur Unterstützung von Ärzten bei endoskopischen Untersuchungen mit Schwerpunkt auf der automatisierten Polypenerkennung in Bildern und Videos

Krenzer, Adrian January 2023 (has links) (PDF)
Deep learning enables enormous progress in many computer vision-related tasks. Artificial Intel- ligence (AI) steadily yields new state-of-the-art results in the field of detection and classification. Thereby AI performance equals or exceeds human performance. Those achievements impacted many domains, including medical applications. One particular field of medical applications is gastroenterology. In gastroenterology, machine learning algorithms are used to assist examiners during interventions. One of the most critical concerns for gastroenterologists is the development of Colorectal Cancer (CRC), which is one of the leading causes of cancer-related deaths worldwide. Detecting polyps in screening colonoscopies is the essential procedure to prevent CRC. Thereby, the gastroenterologist uses an endoscope to screen the whole colon to find polyps during a colonoscopy. Polyps are mucosal growths that can vary in severity. This thesis supports gastroenterologists in their examinations with automated detection and clas- sification systems for polyps. The main contribution is a real-time polyp detection system. This system is ready to be installed in any gastroenterology practice worldwide using open-source soft- ware. The system achieves state-of-the-art detection results and is currently evaluated in a clinical trial in four different centers in Germany. The thesis presents two additional key contributions: One is a polyp detection system with ex- tended vision tested in an animal trial. Polyps often hide behind folds or in uninvestigated areas. Therefore, the polyp detection system with extended vision uses an endoscope assisted by two additional cameras to see behind those folds. If a polyp is detected, the endoscopist receives a vi- sual signal. While the detection system handles the additional two camera inputs, the endoscopist focuses on the main camera as usual. The second one are two polyp classification models, one for the classification based on shape (Paris) and the other on surface and texture (NBI International Colorectal Endoscopic (NICE) classification). Both classifications help the endoscopist with the treatment of and the decisions about the detected polyp. The key algorithms of the thesis achieve state-of-the-art performance. Outstandingly, the polyp detection system tested on a highly demanding video data set shows an F1 score of 90.25 % while working in real-time. The results exceed all real-time systems in the literature. Furthermore, the first preliminary results of the clinical trial of the polyp detection system suggest a high Adenoma Detection Rate (ADR). In the preliminary study, all polyps were detected by the polyp detection system, and the system achieved a high usability score of 96.3 (max 100). The Paris classification model achieved an F1 score of 89.35 % which is state-of-the-art. The NICE classification model achieved an F1 score of 81.13 %. Furthermore, a large data set for polyp detection and classification was created during this thesis. Therefore a fast and robust annotation system called Fast Colonoscopy Annotation Tool (FastCAT) was developed. The system simplifies the annotation process for gastroenterologists. Thereby the i gastroenterologists only annotate key parts of the endoscopic video. Afterward, those video parts are pre-labeled by a polyp detection AI to speed up the process. After the AI has pre-labeled the frames, non-experts correct and finish the annotation. This annotation process is fast and ensures high quality. FastCAT reduces the overall workload of the gastroenterologist on average by a factor of 20 compared to an open-source state-of-art annotation tool. / Deep Learning ermöglicht enorme Fortschritte bei vielen Aufgaben im Bereich der Computer Vision. Künstliche Intelligenz (KI) liefert ständig neue Spitzenergebnisse im Bereich der Erkennung und Klassifizierung. Dabei erreicht oder übertrifft die Leistung von KI teilweise die menschliche Leistung. Diese Errungenschaften wirken sich auf viele Bereiche aus, darunter auch auf medizinische Anwendungen. Ein besonderer Bereich der medizinischen Anwendungen ist die Gastroenterologie. In der Gastroenterologie werden Algorithmen des maschinellen Lernens eingesetzt, um den Untersucher bei medizinischen Eingriffen zu unterstützen. Eines der größten Probleme für Gastroenterologen ist die Entwicklung von Darmkrebs, die weltweit eine der häufigsten krebsbedingten Todesursachen ist. Die Erkennung von Polypen bei Darmspiegelungen ist das wichtigste Verfahren zur Vorbeugung von Darmkrebs. Dabei untersucht der Gastroenterologe den Dickdarm im Rahmen einer Koloskopie, um z.B. Polypen zu finden. Polypen sind Schleimhautwucherungen, die unterschiedlich stark ausgeprägt sein können. Diese Arbeit unterstützt Gastroenterologen bei ihren Untersuchungen mit automatischen Erkennungssystemen und Klassifizierungssystemen für Polypen. Der Hauptbeitrag ist ein Echtzeitpolypenerkennungssystem. Dieses System kann in jeder gastroenterologischen Praxis weltweit mit Open- Source-Software installiert werden. Das System erzielt Erkennungsergebnisse auf dem neusten Stand der Technik und wird derzeit in einer klinischen Studie in vier verschiedenen Praxen in Deutschland evaluiert. In dieser Arbeit werden zwei weitere wichtige Beiträge vorgestellt: Zum einen ein Polypenerkennungssystem mit erweiterter Sicht, das in einem Tierversuch getestet wurde. Polypen verstecken sich oft hinter Falten oder in nicht untersuchten Bereichen. Daher verwendet das Polypenerkennungssystem mit erweiterter Sicht ein Endoskop, das von zwei zusätzlichen Kameras unterstützt wird, um hinter diese Falten zu sehen. Wenn ein Polyp entdeckt wird, erhält der Endoskopiker ein visuelles Signal. Während das Erkennungssystem die beiden zusätzlichen Kameraeingaben verarbeitet, konzentriert sich der Endoskopiker wie gewohnt auf die Hauptkamera. Das zweite sind zwei Polypenklassifizierungsmodelle, eines für die Klassifizierung anhand der Form (Paris) und das andere anhand der Oberfläche und Textur (NICE-Klassifizierung). Beide Klassifizierungen helfen dem Endoskopiker bei der Behandlung und Entscheidung über den erkannten Polypen. Die Schlüsselalgorithmen der Dissertation erreichen eine Leistung, die dem neuesten Stand der Technik entspricht. Herausragend ist, dass das auf einem anspruchsvollen Videodatensatz getestete Polypenerkennungssystem einen F1-Wert von 90,25 % aufweist, während es in Echtzeit arbeitet. Die Ergebnisse übertreffen alle Echtzeitsysteme für Polypenerkennung in der Literatur. Darüber hinaus deuten die ersten vorläufigen Ergebnisse einer klinischen Studie des Polypenerkennungssystems auf eine hohe Adenomdetektionsrate ADR hin. In dieser Studie wurden alle Polypen durch das Polypenerkennungssystem erkannt, und das System erreichte einen hohe Nutzerfreundlichkeit von 96,3 (maximal 100). Bei der automatischen Klassifikation von Polypen basierend auf der Paris Klassifikations erreichte das in dieser Arbeit entwickelte System einen F1-Wert von 89,35 %, was dem neuesten Stand der Technik entspricht. Das NICE-Klassifikationsmodell erreichte eine F1- Wert von 81,13 %. Darüber hinaus wurde im Rahmen dieser Arbeit ein großer Datensatz zur Polypenerkennung und -klassifizierung erstellt. Dafür wurde ein schnelles und robustes Annotationssystem namens FastCAT entwickelt. Das System vereinfacht den Annotationsprozess für Gastroenterologen. Die Gastroenterologen annotieren dabei nur die wichtigsten Teile des endoskopischen Videos. Anschließend werden diese Videoteile von einer Polypenerkennungs-KI vorverarbeitet, um den Prozess zu beschleunigen. Nachdem die KI die Bilder vorbeschriftet hat, korrigieren und vervollständigen Nicht-Experten die Annotationen. Dieser Annotationsprozess ist schnell und gewährleistet eine hohe Qualität. FastCAT reduziert die Gesamtarbeitsbelastung des Gastroenterologen im Durchschnitt um den Faktor 20 im Vergleich zu einem Open-Source-Annotationstool auf dem neuesten Stand der Technik.
32

A learning-based computer vision approach for the inference of articulated motion = Ein lernbasierter computer-vision-ansatz für die erkennung artikulierter bewegung /

Curio, Cristóbal. January 1900 (has links)
Dissertation--Ruhr-Universität, Bochum, 2004. / Includes bibliographical references (p. 179-187).
33

Computer-Vision-basierte Tracking- und Kalibrierungsverfahren für Augmented Reality

Stricker, Didier. Unknown Date (has links)
Techn. Universiẗat, Diss., 2002--Darmstadt.
34

Der Einsatz unbemannter Flugsysteme zur Charakterisierung von gesprengtem Haufwerk

Tscharf, Alexander, Mostegel, Christian, Gaich, Andreas, Mayer, Gerhard, Fraundorfer, Friedrich, Bischof, Horst 28 September 2017 (has links)
Die erreichte Zerkleinerung und die Form des Haufwerks sind die beiden wichtigsten Ergebnisse einer Tagebausprengung. Schnelle Informationen über die Eigenschaften des gesprengten Haufwerks ermöglichen eine zielgerichtete und effiziente Produktionsplanung und Kenntnisse über die erreichte Zerkleinerung ermöglichen außerdem Anpassungen in der weiteren Zerkleinerungskette. Durch den Einsatz von UAVs (unmanned aerial vehicles) gemeinsam mit modernen Algorithmen aus dem Bereich Computer Vision und des maschinellen Lernens soll eine schnelle Erfassung und Interpretation der Daten bei gleichzeitiger Integration in die herkömmlichen betrieblichen Abläufe ermöglicht werden, und außerdem können Schwächen bodengebundener Systeme hinsichtlich Vollständigkeit und Repräsentativität umgangen werden. Im vorliegenden Beitrag wird einerseits auf den relevanten Stand des Wissens und der Technik eingegangen und andererseits wird die verfolgte Stoßrichtung bei der Systementwicklung dargelegt sowie erste Arbeiten präsentiert. / The fragmentation and the shape of the muck pile are the two major outcomes of open pit mine and quarry blasts. Fast information about the muck pile properties will help to improve the production scheduling and furthermore this information could be used to optimize the blasting patterns of future production blasts. The combined use of unmanned aerial vehicles (UAVs) and modern machine learning and computer vision systems offers a new way of acquiring spatial data to determine on-site fragment size distribution, while at the same time enabling integration into common work flows and mitigating the weaknesses of ground-based systems with special regard to completeness and representativeness. In the present paper, we will discuss the relevant related work, present the planned path for system development and give examples of first work.
35

Compression of visual data into symbol-like descriptors in terms of a cognitive real-time vision system / Die Verdichtung der Videoeingabe in symbolische Deskriptoren im Rahmen des kognitiven Echtzeitvisionsystems

Abramov, Alexey 18 July 2012 (has links)
No description available.
36

VOCUS a visual attention system for object detection and goal-directed search /

Frintrop, Simone. January 1900 (has links)
Thesis (Ph.D.)--University of Bonn, Germany. / Includes bibliographical references and index.
37

VOCUS : a visual attention system for object detection and goal-directed search /

Frintrop, Simone. January 1900 (has links)
Thesis (Ph.D.)--University of Bonn, Germany. / Includes bibliographical references and index. Also issued online.
38

Towards Efficient Convolutional Neural Architecture Design

Richter, Mats L. 10 May 2022 (has links)
The design and adjustment of convolutional neural network architectures is an opaque and mostly trial and error-driven process. The main reason for this is the lack of proper paradigms beyond general conventions for the development of neural networks architectures and lacking effective insights into the models that can be propagated back to design decision. In order for the task-specific design of deep learning solutions to become more efficient and goal-oriented, novel design strategies need to be developed that are founded on an understanding of convolutional neural network models. This work develops tools for the analysis of the inference process in trained neural network models. Based on these tools, characteristics of convolutional neural network models are identified that can be linked to inefficiencies in predictive and computational performance. Based on these insights, this work presents methods for effectively diagnosing these design faults before and during training with little computational overhead. These findings are empirically tested and demonstrated on architectures with sequential and multi-pathway structures, covering all the common types of convolutional neural network architectures used for classification. Furthermore, this work proposes simple optimization strategies that allow for goal-oriented and informed adjustment of the neural architecture, opening the potential for a less trial-and-error-driven design process.
39

Auswirkung des Rauschens und Rauschen vermindernder Maßnahmen auf ein fernerkundliches Segmentierungsverfahren

Gerhards, Karl 31 July 2006 (has links)
Zur Verminderung des Rauschens sehr hochauflösender Satellitenbilder existieren eine Vielzahl von Glättungsalgorithmen. Die Wirkung verschiedener Tiefpaß- und kantenerhaltender Filter auf das Verhalten eines objektorientierten Segmentierungsverfahrens wird anhand zweier synthetischer Grauwertbilder und einer IKONOS-Aufnahme untersucht. Als Rauschmaß hat sich ein modifiziertes, ursprünglich von Baltsavias et al. [2001] vorgeschlagenes Verfahren bewährt, in dem je Grauwert nur die Standardabweichungen der gleichförmigsten Gebiete berücksichtigt werden. In Vergleich mit synthetisch verrauschten Bildern zeigt sich jedoch, daß auf diese Weise das Rauschen im Bild systematisch um fast den Faktor zwei unterschätzt wird. Einfache Filter wie Mittelwertfilter und davon abgeleitete Verfahren verschlechtern die Präzision der Objekterkennung dramatisch, kantenerhaltende Filter können bei stärker verrauschten Daten vorteilhaft sein.Als bester Filter, der bei Ansprüchen an präzise Segmentgrenzen im Pixelbereich sinnvoll einzusetzen ist und dabei mit nur einem Parameter gesteuert werden kann, erweist sich der modifizierte EPOS-Filter, ursprünglich vorgestellt von Haag und Sties [1994, 1996]. Die generellen Bildparameter, wie Standardabweichung oder Histogramm werden durch diesen kantenerhaltenden Filter nur unwesentlich beeinflußt.
40

Transparent Object Reconstruction and Registration Confidence Measures for 3D Point Clouds based on Data Inconsistency and Viewpoint Analysis

Albrecht, Sven 28 February 2018 (has links)
A large number of current mobile robots use 3D sensors as part of their sensor setup. Common 3D sensors, i.e., laser scanners or RGB-D cameras, emit a signal (laser light or infrared light for instance), and its reflection is recorded in order to estimate depth to a surface. The resulting set of measurement points is commonly referred to as 'point clouds'. In the first part of this dissertation an inherent problem of sensors that emit some light signal is addressed, namely that these signals can be reflected and/or refracted by transparent of highly specular surfaces, causing erroneous or missing measurements. A novel heuristic approach is introduced how such objects may nevertheless be identified and their size and shape reconstructed by fusing information from several viewpoints of the scene. In contrast to other existing approaches no prior knowledge about the objects is required nor is the shape of the reconstructed objects restricted to a limited set of geometric primitives. The thesis proceeds to illustrate problems caused by sensor noise and registration errors and introduces mechanisms to address these problems. Finally a quantitative comparison between equivalent directly measured objects, the reconstructions and "ground truth" is provided. The second part of the thesis addresses the problem of automatically determining the quality of the registration for a pair of point clouds. Although a different topic, these two problems are closely related, if modeled in the fashion of this thesis. After illustrating why the output parameters of a popular registration algorithm (ICP) are not suitable to deduce registration quality, several heuristic measures are developed that provide better insight. Experiments performed on different datasets were performed to showcase the applicability of the proposed measures in different scenarios.

Page generated in 0.4157 seconds