• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 244
  • 96
  • 15
  • 2
  • Tagged with
  • 356
  • 309
  • 234
  • 192
  • 184
  • 143
  • 132
  • 132
  • 76
  • 53
  • 42
  • 38
  • 36
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

PAC-Lernen zur Insolvenzvorhersage und Hotspot-Identifikation / PAC-Learning for insolvency-prediction and hotspot-identification

Brodag, Thomas 28 May 2008 (has links)
No description available.
272

Automatische Klassifizierung von Gebäudegrundrissen

Hecht, Robert 23 September 2014 (has links) (PDF)
Für die Beantwortung verschiedener Fragestellungen im Siedlungsraum werden kleinräumige Informationen zur Siedlungsstruktur (funktional, morphologisch und sozio-ökonomisch) benötigt. Der Gebäudebestand spielt eine besondere Rolle, da dieser die physische Struktur prägt und sich durch dessen Nutzung Verteilungsmuster von Wohnungen, Arbeitsstätten und Infrastrukturen ergeben. In amtlichen Geodaten, Karten und Diensten des Liegenschaftskatasters und der Landesvermessung sind die Gebäude in ihrem Grundriss modelliert. Diese besitzen allerdings nur selten explizite semantische Informationen zum Gebäudetyp. Es stellt sich die Frage, ob und wie genau eine automatische Erkennung von Gebäudetypen unter Nutzung von Methoden der Geoinformatik, der Mustererkennung und des maschinellen Lernens möglich ist. In diesem Buch werden methodische Bausteine zur automatischen Klassifizierung von Gebäudegrundrissen vorgestellt. Im Kern werden Fragen beantwortet zu den Datenanforderungen, der Gebäudetypologie, der Merkmalsgewinnung sowie zu geeigneten Klassifikationsverfahren und den Klassifikationsgenauigkeiten, die abhängig von Eingangsdaten, Siedlungstyp und Trainingsdatenmenge erzielt werden können. Der Random-Forest-Algorithmus zeigte die höchste Flexibilität, Generalisierungsfähigkeit und Effizienz und wurde als bestes Klassifikationsverfahren identifiziert. Die Arbeit leistet einen wichtigen Beitrag zur Gewinnung kleinräumiger Informationen zur Siedlungsstruktur. Die entwickelte Methodik ermöglicht ein breites Anwendungsspektrum in der Wissenschaft, Planung, Politik und Wirtschaft (u. a. Stadt- und Regionalplanung, Infrastrukturplanung, Risikomanagement, Energiebedarfsplanung oder dem Geomarketing). / Building data are highly relevant for the small-scale description of settlement structures. Spatial base data from National Mapping and Cadastral Agencies describe the buildings in terms of the geometry but often lack semantic information on the building type. Here, methods for the automatic classification of building footprints are presented and discussed. The work addresses issues of data integration, data processing, feature extraction, feature selection, and investigates the accuracy of various classification methods. The results are of scientific, planning, policy and business interest at various spatial levels.
273

Community based Question Answer Detection

Muthmann, Klemens 02 July 2014 (has links) (PDF)
Each day, millions of people ask questions and search for answers on the World Wide Web. Due to this, the Internet has grown to a world wide database of questions and answers, accessible to almost everyone. Since this database is so huge, it is hard to find out whether a question has been answered or even asked before. As a consequence, users are asking the same questions again and again, producing a vicious circle of new content which hides the important information. One platform for questions and answers are Web forums, also known as discussion boards. They present discussions as item streams where each item contains the contribution of one author. These contributions contain questions and answers in human readable form. People use search engines to search for information on such platforms. However, current search engines are neither optimized to highlight individual questions and answers nor to show which questions are asked often and which ones are already answered. In order to close this gap, this thesis introduces the \\emph{Effingo} system. The Effingo system is intended to extract forums from around the Web and find question and answer items. It also needs to link equal questions and aggregate associated answers. That way it is possible to find out whether a question has been asked before and whether it has already been answered. Based on these information it is possible to derive the most urgent questions from the system, to determine which ones are new and which ones are discussed and answered frequently. As a result, users are prevented from creating useless discussions, thus reducing the server load and information overload for further searches. The first research area explored by this thesis is forum data extraction. The results from this area are intended be used to create a database of forum posts as large as possible. Furthermore, it uses question-answer detection in order to find out which forum items are questions and which ones are answers and, finally, topic detection to aggregate questions on the same topic as well as discover duplicate answers. These areas are either extended by Effingo, using forum specific features such as the user graph, forum item relations and forum link structure, or adapted as a means to cope with the specific problems created by user generated content. Such problems arise from poorly written and very short texts as well as from hidden or distributed information.
274

Automatische Erkennung von Gebäudetypen auf Grundlage von Geobasisdaten

Hecht, Robert 10 February 2015 (has links) (PDF)
Für die kleinräumige Modellierung und Analyse von Prozessen im Siedlungsraum spielen gebäudebasierte Informationen eine zentrale Rolle. In amtlichen Geodaten, Karten und Diensten des Liegenschaftskatasters und der Landesvermessung werden die Gebäude in ihrem Grundriss modelliert. Semantische Informationen zur Gebäudefunktion, der Wohnform oder dem Baualter sind in den Geobasisdaten nur selten gegeben. In diesem Beitrag wird eine Methode zur automatischen Klassifizierung von Gebäudegrundrissen vorgestellt mit dem Ziel, diese für die Ableitung kleinräumiger Informationen zur Siedlungsstruktur zu nutzen. Dabei kommen Methoden der Mustererkennung und des maschinellen Lernens zum Einsatz. Im Kern werden Gebäudetypologie, Eingangsdaten, Merkmalsgewinnung sowie verschiedene Klassifikationsverfahren hinsichtlich ihrer Genauigkeit und Generalisierungsfähigkeit untersucht. Der Ensemble-basierte Random-Forest-Algorithmus zeigt im Vergleich zu 15 weiteren Lernverfahren die höchste Generalisierungsfähigkeit und Effizienz und wurde als bester Klassifikator zur Lösung der Aufgabenstellung identifiziert. Für Gebäudegrundrisse im Vektormodell, speziell den Gebäuden aus der ALK, dem ALKIS® oder dem ATKIS® Basis-DLM sowie den amtlichen Hausumringen und 3D-Gebäudemodellen, kann mit dem Klassifikator für alle städtischen Gebiete eine Klassifikationsgenauigkeit zwischen 90 % und 95 % erreicht werden. Die Genauigkeit bei Nutzung von Gebäudegrundrissen extrahiert aus digitalen topographischen Rasterkarten ist mit 76 % bis 88 % deutlich geringer. Die automatische Klassifizierung von Gebäudegrundrissen leistet einen wichtigen Beitrag zur Gewinnung von Informationen für die kleinräumige Beschreibung der Siedlungsstruktur. Neben der Relevanz in den Forschungs- und Anwendungsfeldern der Stadtgeographie und Stadtplanung sind die Ergebnisse auch für die kartographischen Arbeitsfelder der Kartengeneralisierung, der automatisierten Kartenerstellung sowie verschiedenen Arbeitsfeldern der Geovisualisierung relevant.
275

Algorithmen zur automatisierten Dokumentation und Klassifikation archäologischer Gefäße

Hörr, Christian 30 September 2011 (has links) (PDF)
Gegenstand der vorliegenden Dissertation ist die Entwicklung von Algorithmen und Methoden mit dem Ziel, Archäologen bei der täglichen wissenschaftlichen Arbeit zu unterstützen. Im Teil I werden Ideen präsentiert, mit denen sich die extrem zeitintensive und stellenweise stupide Funddokumentation beschleunigen lässt. Es wird argumentiert, dass das dreidimensionale Erfassen der Fundobjekte mittels Laser- oder Streifenlichtscannern trotz hoher Anschaffungskosten wirtschaftlich und vor allem qualitativ attraktiv ist. Mithilfe von nicht fotorealistischen Visualisierungstechniken können dann wieder aussagekräftige, aber dennoch objektive Bilder generiert werden. Außerdem ist speziell für Gefäße eine vollautomatische und umfassende Merkmalserhebung möglich. Im II. Teil gehen wir auf das Problem der automatisierten Gefäßklassifikation ein. Nach einer theoretischen Betrachtung des Typbegriffs in der Archäologie präsentieren wir eine Methodologie, in der Verfahren sowohl aus dem Bereich des unüberwachten als auch des überwachten Lernens zum Einsatz kommen. Besonders die letzteren haben sich dabei als überaus praktikabel erwiesen, um einerseits unbekanntes Material einer bestehenden Typologie zuzuordnen, andererseits aber auch die Struktur der Typologie selbst kritisch zu hinterfragen. Sämtliche Untersuchungen haben wir beispielhaft an den bronzezeitlichen Gräberfeldern von Kötitz, Altlommatzsch (beide Lkr. Meißen), Niederkaina (Lkr. Bautzen) und Tornow (Lkr. Oberspreewald-Lausitz) durchgeführt und waren schließlich sogar in der Lage, archäologisch relevante Zusammenhänge zwischen diesen Fundkomplexen herzustellen. / The topic of the dissertation at hand is the development of algorithms and methods aiming at supporting the daily scientific work of archaeologists. Part I covers ideas for accelerating the extremely time-consuming and often tedious documentation of finds. It is argued that digitizing the objects with 3D laser or structured light scanners is economically reasonable and above all of high quality, even though those systems are still quite expensive. Using advanced non-photorealistic visualization techniques, meaningful but at the same time objective pictures can be generated from the virtual models. Moreover, specifically for vessels a fully-automatic and comprehensive feature extraction is possible. In Part II, we deal with the problem of automated vessel classification. After a theoretical consideration of the type concept in archaeology we present a methodology, which employs approaches from the fields of both unsupervised and supervised machine learning. Particularly the latter have proven to be very valuable in order to assign unknown entities to an already existing typology, but also to challenge the typology structure itself. All the analyses have been exemplified by the Bronze Age cemeteries of Kötitz, Altlommatzsch (both district of Meißen), Niederkaina (district of Bautzen), and Tornow (district Oberspreewald-Lausitz). Finally, we were even able to discover archaeologically relevant relationships between these sites.
276

Learning OWL Class Expressions

Lehmann, Jens 24 June 2010 (has links) (PDF)
With the advent of the Semantic Web and Semantic Technologies, ontologies have become one of the most prominent paradigms for knowledge representation and reasoning. The popular ontology language OWL, based on description logics, became a W3C recommendation in 2004 and a standard for modelling ontologies on the Web. In the meantime, many studies and applications using OWL have been reported in research and industrial environments, many of which go beyond Internet usage and employ the power of ontological modelling in other fields such as biology, medicine, software engineering, knowledge management, and cognitive systems. However, recent progress in the field faces a lack of well-structured ontologies with large amounts of instance data due to the fact that engineering such ontologies requires a considerable investment of resources. Nowadays, knowledge bases often provide large volumes of data without sophisticated schemata. Hence, methods for automated schema acquisition and maintenance are sought. Schema acquisition is closely related to solving typical classification problems in machine learning, e.g. the detection of chemical compounds causing cancer. In this work, we investigate both, the underlying machine learning techniques and their application to knowledge acquisition in the Semantic Web. In order to leverage machine-learning approaches for solving these tasks, it is required to develop methods and tools for learning concepts in description logics or, equivalently, class expressions in OWL. In this thesis, it is shown that methods from Inductive Logic Programming (ILP) are applicable to learning in description logic knowledge bases. The results provide foundations for the semi-automatic creation and maintenance of OWL ontologies, in particular in cases when extensional information (i.e. facts, instance data) is abundantly available, while corresponding intensional information (schema) is missing or not expressive enough to allow powerful reasoning over the ontology in a useful way. Such situations often occur when extracting knowledge from different sources, e.g. databases, or in collaborative knowledge engineering scenarios, e.g. using semantic wikis. It can be argued that being able to learn OWL class expressions is a step towards enriching OWL knowledge bases in order to enable powerful reasoning, consistency checking, and improved querying possibilities. In particular, plugins for OWL ontology editors based on learning methods are developed and evaluated in this work. The developed algorithms are not restricted to ontology engineering and can handle other learning problems. Indeed, they lend themselves to generic use in machine learning in the same way as ILP systems do. The main difference, however, is the employed knowledge representation paradigm: ILP traditionally uses logic programs for knowledge representation, whereas this work rests on description logics and OWL. This difference is crucial when considering Semantic Web applications as target use cases, as such applications hinge centrally on the chosen knowledge representation format for knowledge interchange and integration. The work in this thesis can be understood as a broadening of the scope of research and applications of ILP methods. This goal is particularly important since the number of OWL-based systems is already increasing rapidly and can be expected to grow further in the future. The thesis starts by establishing the necessary theoretical basis and continues with the specification of algorithms. It also contains their evaluation and, finally, presents a number of application scenarios. The research contributions of this work are threefold: The first contribution is a complete analysis of desirable properties of refinement operators in description logics. Refinement operators are used to traverse the target search space and are, therefore, a crucial element in many learning algorithms. Their properties (completeness, weak completeness, properness, redundancy, infinity, minimality) indicate whether a refinement operator is suitable for being employed in a learning algorithm. The key research question is which of those properties can be combined. It is shown that there is no ideal, i.e. complete, proper, and finite, refinement operator for expressive description logics, which indicates that learning in description logics is a challenging machine learning task. A number of other new results for different property combinations are also proven. The need for these investigations has already been expressed in several articles prior to this PhD work. The theoretical limitations, which were shown as a result of these investigations, provide clear criteria for the design of refinement operators. In the analysis, as few assumptions as possible were made regarding the used description language. The second contribution is the development of two refinement operators. The first operator supports a wide range of concept constructors and it is shown that it is complete and can be extended to a proper operator. It is the most expressive operator designed for a description language so far. The second operator uses the light-weight language EL and is weakly complete, proper, and finite. It is straightforward to extend it to an ideal operator, if required. It is the first published ideal refinement operator in description logics. While the two operators differ a lot in their technical details, they both use background knowledge efficiently. The third contribution is the actual learning algorithms using the introduced operators. New redundancy elimination and infinity-handling techniques are introduced in these algorithms. According to the evaluation, the algorithms produce very readable solutions, while their accuracy is competitive with the state-of-the-art in machine learning. Several optimisations for achieving scalability of the introduced algorithms are described, including a knowledge base fragment selection approach, a dedicated reasoning procedure, and a stochastic coverage computation approach. The research contributions are evaluated on benchmark problems and in use cases. Standard statistical measurements such as cross validation and significance tests show that the approaches are very competitive. Furthermore, the ontology engineering case study provides evidence that the described algorithms can solve the target problems in practice. A major outcome of the doctoral work is the DL-Learner framework. It provides the source code for all algorithms and examples as open-source and has been incorporated in other projects.
277

Algorithmische Bestimmung der Alterungscharakteristik von Mittelspannungskabelmuffen basierend auf diagnostischen Messwerten und Betriebsmitteldaten / Algorithmic determination of the aging characteristics of medium voltage cable joints based on diagnostic measured values ​​and operating medium data

Hunold, Sven 21 March 2017 (has links) (PDF)
Bei der Zustandsbewertung von Kabeln steht derzeit das Mittelspannungsnetz im Fokus der Betrachtungen. Das Mittelspannungsnetz verbindet das Hochspannungsnetz mit dem Niederspannungsnetz und nimmt damit eine besondere Bedeutung ein. Störungen in diesem Netz wirken sich direkt als Versorgungsunterbrechung auf den Letztverbraucher aus. Rund 80 bis 85 % der Versorgungsunterbrechungen resultieren aus Problemen im Mittelspannungsnetz, sodass dortige Aktivitäten den größten Hebel bei der Steigerung der Versorgungsqualität entwickeln. Mittels Zustandsbewertung von Kabeln können verdeckte Fehler aufgedeckt oder deren Alterungszustand bestimmt werden. Nicht jeder diagnostizierte Fehler führt unmittelbar zum Ausfall. Er beschleunigt jedoch die Alterung, die letztendlich zum Ausfall führt. Die Arbeit beschäftigt sich mit der Identifizierung von Fehlern in Mittelspannungskabelmuffen im Zusammenhang mit der Alterung, um die Restlebensdauer auszunutzen und dem Ausfall zuvorzukommen. / By evaluating the status of cables, hidden errors can be detected or their aging condition can be determined. Not every diagnosed fault leads directly to failure. However, it accelerates aging, which ultimately leads to failure. The work deals with the identification of faults in medium-voltage cable joints in connection with aging in order to exploit the remaining life and to prevent the failure.
278

Algorithmische Bestimmung der Alterungscharakteristik von Mittelspannungskabelmuffen basierend auf diagnostischen Messwerten und Betriebsmitteldaten / Algorithmic determination of the aging characteristics of medium voltage cable joints based on diagnostic measured values ​​and operating medium data

Hunold, Sven 21 July 2017 (has links) (PDF)
Bei der Zustandsbewertung von Kabeln steht derzeit das Mittelspannungsnetz im Fokus der Betrachtungen. Das Mittelspannungsnetz verbindet das Hochspannungsnetz mit dem Niederspannungsnetz und nimmt damit eine besondere Bedeutung ein. Störungen in diesem Netz wirken sich direkt als Versorgungsunterbrechung auf den Letztverbraucher aus. Rund 80 bis 85 % der Versorgungsunterbrechungen resultieren aus Problemen im Mittelspannungsnetz, sodass dortige Aktivitäten den größten Hebel bei der Steigerung der Versorgungsqualität entwickeln. Mittels Zustandsbewertung von Kabeln können verdeckte Fehler aufgedeckt oder deren Alterungszustand bestimmt werden. Nicht jeder diagnostizierte Fehler führt unmittelbar zum Ausfall. Er beschleunigt jedoch die Alterung, die letztendlich zum Ausfall führt. Die Arbeit beschäftigt sich mit der Identifizierung von Fehlern in Mittelspannungskabelmuffen im Zusammenhang mit der Alterung, um die Restlebensdauer auszunutzen und dem Ausfall zuvorzukommen. / By evaluating the status of cables, hidden errors can be detected or their aging condition can be determined. Not every diagnosed fault leads directly to failure. However, it accelerates aging, which ultimately leads to failure. The work deals with the identification of faults in medium-voltage cable joints in connection with aging in order to exploit the remaining life and to prevent the failure.
279

Context-aware anchoring, semantic mapping and active perception for mobile robots

Günther, Martin 30 November 2021 (has links)
An autonomous robot that acts in a goal-directed fashion requires a world model of the elements that are relevant to the robot's task. In real-world, dynamic environments, the world model has to be created and continually updated from uncertain sensor data. The symbols used in plan-based robot control have to be anchored to detected objects. Furthermore, robot perception is not only a bottom-up and passive process: Knowledge about the composition of compound objects can be used to recognize larger-scale structures from their parts. Knowledge about the spatial context of an object and about common relations to other objects can be exploited to improve the quality of the world model and can inform an active search for objects that are missing from the world model. This thesis makes several contributions to address these challenges: First, a model-based semantic mapping system is presented that recognizes larger-scale structures like furniture based on semantic descriptions in an ontology. Second, a context-aware anchoring process is presented that creates and maintains the links between object symbols and the sensor data corresponding to those objects while exploiting the geometric context of objects. Third, an active perception system is presented that actively searches for a required object while being guided by the robot's knowledge about the environment.
280

New Paradigms for Automated Classification of Pottery

Hörr, Christian, Lindinger, Elisabeth, Brunnett, Guido 14 September 2009 (has links)
This paper describes how feature extraction on ancient pottery can be combined with recent developments in artificial intelligence to draw up an automated, but still flexible classification system. These features include for instance several dimensions of the vessel's body, ratios thereof, an abstract representation of the overall shape, the shape of vessel segments and the number and type of attachments such as handles, lugs and feet. While most traditional approaches to classification are based on statistical analysis or the search for fuzzy clusters in high-dimensional spaces, we apply machine learning techniques, such as decision tree algorithms and neural networks. These methods allow for an objective and reproducible classification process. Conclusions about the "typability" of data, the evolution of types and the diagnostic attributes of the types themselves can be drawn as well.

Page generated in 0.048 seconds