151 |
Coordinating transportation services in a hospital environment using Deep Reinforcement LearningLundström, Caroline, Hedberg, Sara January 2018 (has links)
Artificial Intelligence has in the recent years become a popular subject, many thanks to the recent progress in the area of Machine Learning and particularly to the achievements made using Deep Learning. When combining Reinforcement Learning and Deep Learning, an agent can learn a successful behavior for a given environment. This has opened the possibility for a new domain of optimization. This thesis evaluates if a Deep Reinforcement Learning agent can learn to aid transportation services in a hospital environment. A Deep Q-learning Networkalgorithm (DQN) is implemented, and the performance is evaluated compared to a Linear Regression-, a random-, and a smart agent. The result indicates that it is possible for an agent to learn to aid transportation services in a hospital environment, although it does not outperform linear regression on the most difficult task. For the more complex tasks, the learning process of the agent is unstable, and implementation of a Double Deep Q-learning Network may stabilize the process. An overall conclusion is that Deep Reinforcement Learning can perform well on these types of problems and more applied research may result in greater innovations.
|
152 |
Classification into Readability Levels : Implementation and EvaluationLarsson, Patrik January 2006 (has links)
The use for a readability classification model is mainly as an integrated part of an information retrieval system. By matching the user's demands of readability to the documents with the corresponding readability, the classification model can further improve the results of, for example, a search engine. This thesis presents a new solution for classification into readability levels for Swedish. The results from the thesis are a number of classification models. The models were induced by training a Support Vector Machines classifier on features that are established by previous research as good measurements of readability. The features were extracted from a corpus annotated with three readability levels. Natural Language Processing tools for tagging and parsing were used to analyze the corpus and enable the extraction of the features from the corpus. Empirical testings of different feature combinations were performed to optimize the classification model. The classification models render a good and stable classification. The best model obtained a precision score of 90.21\% and a recall score of 89.56\% on the test-set, which is equal to a F-score of 89.88. / Uppsatsen beskriver utvecklandet av en klassificeringsmodell för Svenska texter beroende på dess läsbarhet. Användningsområdet för en läsbaretsklassificeringsmodell är främst inom informationssökningssystem. Modellen kan öka träffsäkerheten på de dokument som anses relevanta av en sökmotor genom att matcha användarens krav på läsbarhet med de indexerade dokumentens läsbarhet. Resultatet av uppsatsen är ett antal modeller för klassificering av text beroende på läsbarhet. Modellerna har tagits fram genom att träna upp en Support Vector Machines klassificerare, på ett antal särdrag som av tidigare forskning har fastslagits vara goda mått på läsbarhet. Särdragen extraherades från en korpus som är annoterad med tre läsbarhetsnivåer. Språkteknologiska verktyg för taggning och parsning användes för att möjliggöra extraktionen av särdragen. Särdragen utvärderades empiriskt i olika särdragskombinationer för att optimera modellerna. Modellerna testades och utvärderades med goda resultat. Den bästa modellen hade en precision på 90,21 och en recall på 89,56, detta ger en F-score som är 89,88. Uppsatsen presenterar förslag på vidareutveckling samt potentiella användningsområden.
|
153 |
Evaluation of Deep Learning Methods for Creating Synthetic ActorsToghiani-Rizi, Babak January 2017 (has links)
Recent advancements in hardware, techniques and data availability have resulted in major advancements within the field of Machine Learning and specifically in a subset of modeling techniques referred to as Deep Learning. Virtual simulations are common tools of support in training and decision making within the military. These simulations can be populated with synthetic actors, often controlled through manually implemented behaviors, developed in a streamlined process by domain doctrines and programmers. This process is often time inefficient, expensive and error prone, potentially resulting in actors unrealistically superior or inferior to human players. This thesis evaluates alternative methods of developing the behavior of synthetic actors through state-of-the-art Deep Learning methods. Through a few selected Deep Reinforcement Learning algorithms, the actors are trained in four different light weight simulations with objectives like those that could be encountered in a military simulation. The results show that the actors trained with Deep Learning techniques can learn how to perform simple as well as more complex tasks by learning a behavior that could be difficult to manually program. The results also show the same algorithm can be used to train several totally different types of behavior, thus demonstrating the robustness of these methods. This thesis finally concludes that Deep Learning techniques have, given the right tools, a good potential as alternative methods of training the behavior of synthetic actors, and to potentially replace the current methods in the future.
|
154 |
Machine Learning Adversaries in Video Games : Using reinforcement learning in the Unity Engine to create compelling enemy charactersNämerforslund, Tim January 2021 (has links)
I och med att videospel blir mer avancerade, inte bara grafiskt utan också som konstform samt att dom erbjuder en mer inlevelsefull upplevelse, så kan det förväntas att spelen också ska erbjuda en större utmaning för att få spelaren bli ännu mer engagerad i spelet. Dagens spelare är vana vid fiender vars beteende styrs av tydliga mönster och regler, som beroende på situation agerar på ett förprogrammerat sätt och agerar utifrån förutsägbara mönster. Detta leder till en spelupplevelse där målet blir att klura ut det här mönstret och hitta ett sätt att överlista eller besegra det. Men tänk om det fanns en möjlighet att skapa en ny form av fiende svarar och anpassar sig beroende på hur spelaren beter sig? Som anpassar sig och kommer på egna strategier utifrån hur spelaren spelar, som aktivt försöker överlista spelaren? Genom maskininlärning i spel möjliggörs just detta. Med en maskininlärningsmodell som styr fienderna och tränas mot spelarna som möter den så lär sig fienderna att möta spelarna på ett dynamiskt sätt som anpassas allt eftersom spelaren spelar spelet. Den här studien ämnar att undersöka stegen som krävs för att implementera maskininlärning i Unity motorn samt undersöka ifall det finns någon upplevd skillnad i spelupplevelsen hos spelare som fått möta fiender styrda av en maskininlärningsmodell samt en mer traditionell typ av fiende. Data samlas in från testspelarnas spelsessioner samt deras svar i form av ett frågeformulär, där datan presenteras i grafform för att ge insikt kring ifall fienderna var likvärdigt svåra att spela mot. Svaren från frågeformulären används för att jämföra spelarnas spelupplevelser och utifrån detta se skillnaderna mellan dom. Skalan på spelet och dess enkelhet leder till att svaren inte bör påverkas av okända och ej kontrollerbara faktorer, vilket ger svar som ger oss insikt i skillnaderna mellan dom olika spelupplevelserna där en preferens för fiender styrda av maskininlärningsmodeller kan anas, då dom upplevs mer oförutsägbara och varierande. / As video games become more complex and more immersive, not just graphically or as an artform, but also technically, it can be expected that games behave on a deeper level to challenge and immerse the player further. Today’s gamers have gotten used to pattern based enemies, moving between preprogrammed states with predictable patterns, which lends itself to a certain kind of gameplay where the goal is to figure out how to beat said pattern. But what if there could be more in terms of challenging the player on an interactive level? What if the enemies could learn and adapt, trying to outsmart the player just as much as the player tries to outsmart the enemies. This is where the field of machine learning enters the stage and opens up for an entirely new type of non-player character in videogames. An enemy who uses a trained machine learning model to play against the player, who can adapt and become better as more people play the game. This study aims to look at early steps to implement machine learning in video games, in this case in the Unity engine, and look at the players perception of said enemies compared to normal state-driven enemies. Via testing voluntary players by letting them play against two kinds of enemies, data is gathered to compare the average performance of the players, after which players answer a questionnaire. These answers are analysed to give an indication of preference in type of enemy. Overall the small scale of the game and simplicity of the enemies gives clear answers but also limits the potential complexity of the enemies and thus the players enjoyment. Though this also enables us to discern a perceived difference in the players experience, where a preference for machine learning controlled enemies is noticeable, as they behave less predictable with more varied behaviour.
|
155 |
Evaluating Environmental Sensor Value Prediction using Machine Learning : Long Short-Term Memory Neural Networks for Smart Building ApplicationsAndersson, Joakim January 2021 (has links)
IoT har blivit en stor producent av big data. Big data kan användas för att optimera operationer, för att kunna göra det så måste man kunna extrahera användbar information från big data. Detta kan göras med hjälp av neurala nätverk och maskininlärning, vilket kan leda till nya typer av smarta applikationer. Den här rapporten fokuserar på att besvara frågan hur bra är neurala nätverk på att förutspå sensor värden och hur pålitliga är förutsägelserna och om dom kan användas i verkliga applikationer. Sensorlådor användes för att samla data från olika rum och olika neurala nätverksmodeller baserade på LSTM nätverk användes för att förutspå framtida värden. Dessa värden jämfördes sedan med dom riktiga värdena och absoluta medelfelet och standardavvikelsen beräknades. Tiden som behövdes för att producera en förutsägelse mättes och medelvärde och standardavvikelsen beräknades även där. LSTM modellerna utvärderades utifrån deras prestanda och träffsäkerhet. Modellen som endast förutspådde ett värde hade bäst träffsäkerhet, och modellerna tappade träffsäkerheten desto längre in i framtiden dom försökte förutspå. Resultaten visar att även dom enkla modellerna som skapades i detta projekt kan med säkerhet förutspå värden och därför användas i olika applikationer där extremt bra förutsägelser inte behövs. / The IoT is becoming an increasing producer of big data. Big data can be used to optimize operations, realizing this depends on being able to extract useful information from big data. With the use of neural networks and machine learning this can be achieved and can enable smart applications that use this information. This thesis focuses on answering the question how good are neural networks at predicting sensor values and is the predictions reliable and useful in a real-life application? Sensory boxes were used to gather data from rooms, and several neural networks based on LSTM were used to predict the future values of the sensors. The absolute mean error of the predictions along with the standard deviation was calculated. The time needed to produce a prediction was measured as an absolute mean values with standard deviation. The LSTM models were then evaluated based on their performance and prediction accuracy. The single-step model, which only predicts the next timestep was the most accurate. The models loose accuracy when they need to predict longer periods of time. The results shows that simple models can predict the sensory values with some accuracy, while they may not be useful in areas where exact climate control is needed the models can be applicable in work areas such as schools or offices.
|
156 |
Progressiv webbapplikation med bildigenkänning / Progressive web application with image recognitionBehrenfors, Louise, Norlén, Kevin January 2020 (has links)
Allt fler personer i Sverige har tillgång till både Internet och smarttelefoner i en större utsträckning än någonsin förr. Det finns applikationer för det mesta, som tränings-, spel- och nyhetsappar. Utefter detta och vår samtids ökade fokus på miljön och återvinning valdes målet med detta projekt, en progressiv webbapplikation som använder sig av bildigenkänning med hjälp av maskininlärning som ska underlätta för människor att sortera och återvinna sina hushållsavfall. Slutresultatet är en applikation som kan köras likvärdigt på de flesta enheter (mobil, pc, surfplattor etc.), oavsett vilken modell eller vilket operativsystem den har. Applikatio- nen används för att identifiera hushållsavfall genom en bildigenkänningstjänst. Denna rapport behandlar de teknologier som använts för att bygga applikationen och implementationsprocessen av den. Slutligen diskuterar vi resultatet av utvecklingen och några utvalda personer fick testa appen, svara på några frågor och säga vad de tyckte. / More and more people in Sweden have access to both the Internet and smartphones to a greater extent than ever before. There is an application for almost everything, such as training-, games- and news applications. Based on this and the increasing interest for the environment in general and recycling, the goal was set for this project. A progressive web application with the use of image recognition with the help of machine learning that will make it easier for people to sort and recycle their household trash. The final result is an application that can be run equally on most devices (mobile, PC, tablets, etc.), regardless of model or operating system. The application is used to identify household waste through an image recognition service. This report addresses the technologies used to build the application and implementation process of it. Finally we discuss the results of the development and some selected people got to test the app and answer some questions and voice their opinions.
|
157 |
Extracting Particular Information from Swedish Public Procurement Using Machine LearningWaade, Eystein January 2020 (has links)
The Swedish procurement process has a yearly value of 706 Billion SEK over approximately 18 000 procurements. With each process comes many documents written in different formats that need to be understood to be able to be a possible tender. With the development of new technology and the age of Machine Learning it is of huge interest to investigate how we can use this knowledge to enhance the way we procure. The goal of this project was to investigate if public procurements written in Swedish in PDF format can be parsed and segmented into a structured format. This process was divided into three parts; pre-processing, annotation, and training/evaluation. The pre-processing was accomplished using an open-source pdf-parser called pdfalto that produces structured XML-files with layout and lexical information. The annotation process consisted of generalizing a procurement into high-level segments that are applicable to different document structures as well as finding relevant features. This was accomplished by identifying frequent document formats so that many documents could be annotated using deterministic rules. Finally, a linear chain Conditional Random Field was trained and tested to segment the documents. The models showed a high performance when they were tested on documents of the same format as it was trained on. However, the data from five different documents were not sufficient or general enough to make the model able to make reliable predictions on a sixth format that it had not seen before. The best result was a total accuracy of 90,6% where two of the labels had a f1-score above 95% and the two other labels had a f1-score of 51,8% and 63,3%.
|
158 |
Kan en bättre prediktion uppnås genom en kategorispecifik modell? : Teknologiprojekt på Kickstarter och maskininlärningAppelquist, Niklas, Karlsson, Emelia January 2020 (has links)
Crowdfunding används för att samla in pengar för tänkta projekt via internet, där ett stort antal investerare bidrar med små summor. Kickstarter är en av de största crowdfundingplattformarna idag. Trots det stora intresset för crowdfunding misslyckas många kampanjer att nå sin målsumma och projekt av kategorin teknologi visar sig vara de projekt som misslyckas till högst grad. Därmed är det av intresse att kunna förutsäga vilka kampanjer som kommer att lyckas eller misslyckas. Denna forskningsansats syftar till att undersöka genomförbarheten i att uppnå en högre accuracy vid prediktion av framgången hos lanserade kickstarterprojekt med hjälp av maskininlärning genom att använda en mindre mängd kategorispecifik data. Data över 192 548 lanserade projekt på plattformen Kickstarter har samlats in via www.kaggle.com. Två modeller av typen RandomForest har sedan tränats där en modell tränades med data över samtliga projekt i uppsättningen och en tränades med data över teknologiprojekt med syftet att kunna jämföra modellernas prestation vid klassificering av teknologiprojekt. Resultatet visar att en högre accuracy uppmättes för teknologimodellen som nådde 68,37% träffsäkerhet vid klassificeringen gentemot referensmodellens uppvisade accuracy på 68,00%. / Crowdfunding is used to collect money via internet for potential projects through a large number of backers which contribute with small pledges. Kickstarter is one of the largest crowdfunding platforms today. Despite the big interest in crowdfunding a lot of launched campaigns fail to reach their goal and projects of the category technology shows the largest rate of failure on Kickstarter. Therefore, it is important to be able to predict which campaigns are likely to succeed or fail. This thesis aims to explore the possibility of reaching a higher accuracy when predicting the success of launched projects with machine learning with a smaller amount of category-specific data. The data consists om 192 548 launched projects on Kickstarter and has been collected through Kaggle.com. Two models of the type Random Forest has been developed where one model has been trained with general data over all projects and one model has been trained with category specific data over technology projects. The results show that the technology model show a higher accuracy rate with 68,37 % compared to the reference model with 68,00 %.
|
159 |
Automated invoice handling with machine learning and OCR / Automatiserad fakturahantering med maskininlärning och OCRLarsson, Andreas, Segerås, Tony January 2016 (has links)
Companies often process invoices manually, therefore automation could reduce manual labor. The aim of this thesis is to evaluate which OCR-engine, Tesseract or OCRopus, performs best at interpreting invoices. This thesis also evaluates if it is possible to use machine learning to automatically process invoices based on previously stored data. By interpreting invoices with the OCR-engines, it results in the output text having few spelling errors. However, the invoice structure is lost, making it impossible to interpret the corresponding fields. If Naïve Bayes is chosen as the algorithm for machine learning, the prototype can correctly classify recurring invoice lines after a set of data has been processed. The conclusion is, neither of the two OCR-engines can interpret the invoices to plain text making it understandable. Machine learning with Naïve Bayes works on invoices if there is enough previously processed data. The findings in this thesis concludes that machine learning and OCR can be utilized to automatize manual labor. / Företag behandlar oftast fakturor manuellt och en automatisering skulle kunna minska fysiskt arbete. Målet med examensarbetet var att undersöka vilken av OCR-läsarna, Tesseract och OCRopus som fungerar bäst på att tolka en inskannad faktura. Även undersöka om det är möjligt med maskininlärning att automatiskt behandla fakturor utifrån tidigare sparad data. Genom att tolka text med hjälp av OCR-läsarna visade resultaten att den producerade texten blev språkligt korrekt, men att strukturen i fakturan inte behölls vilket gjorde det svårt att tolka vilka fält som hör ihop. Naïve Bayes valdes som algoritm till maskininlärningen och resultatet blev en prototyp som korrekt kunde klassificera återkommande fakturarader, efter att en mängd träningsdata var behandlad. Slutsatsen är att ingen av OCR-läsarna kunde tolka fakturor så att resultatet kunde användas vidare, och att maskininlärning med Naïve Bayes fungerar på fakturor om tillräckligt med tidigare behandlad data finns. Utfallet av examensarbetet är att maskininlärning och OCR kan användas för att automatisera fysiskt arbete.
|
160 |
Digitala verktyg och deras effekt på journalistik i Sverige / Digital tools and their effect on journalism in SwedenKökeritz, Nils, Wiik, Teo January 2022 (has links)
The digital transformation has influenced everything from smaller government offices to big corporations, and the journalistic profession is no exception. This study examines what effect digital transformation has had on the journalistic profession in Sweden. We’ve conducted a literature review where we found four techniques that is being used internationally. Based on those techniques and relevant theories we’ve created a theoretical framework, with heavy inspiration from Gregory Vial’s research. An interview study was conducted with five informants, with different position, from different media organizations in Sweden, ranging from nationwide to local news. We found that all news outlets in Sweden we examined use some sort of digital tool to ease their workload or enhance their results. Organizations, for example, used robot journalists to write articles for them, algorithms to build their websites to ease their workload, and data driven journalism to scan great datasets to get results more efficiently.
|
Page generated in 0.0596 seconds