Spelling suggestions: "subject:"mass spectrometer"" "subject:"mass spectrometers""
1 |
Determination of the factors that affect the gas-phase reactivity of metal-centered cyclopropanation catalysts and examination of the properties of their reaction productsAldajaei, Jamal 15 April 2014 (has links)
Gas phase studies of organometallic systems have provided deep insight into reaction mechanisms and reaction intermediates. In this thesis, several metal/ligand systems were examined in an effort to form metal carbenes in the gas phase. With cobalt and iron porphyrins, the carbene undergoes metal-ligand insertion. With copper bis-oxazolines, metal carbenes tend to undergo metal-ligand insertion and a Wolff rearrangement. To avoid insertions, we turned to a rigid ligand, 1, 10-phenanthroline. Under ESI conditions, a copper (I) complex with phenanthroline can be formed. When treated with diazoacetate esters, the dominant product results from addition with loss of nitrogen followed by loss of CO. This appears to be the result of a Wolff rearrangement of the metal carbene to give a metal ketene complex that spontaneously loses CO. There is no evidence of any stable metal carbenes in this reaction system. Trimethylsilyldiazomethane was also used as a carbene precursor, and its reaction with the copper phenanthroline complex gives addition with loss of nitrogen; but the product exhibits no carbene reactivity with alkenes. Here computational modeling suggests that the metal carbene undergoes a 1, 2 methyl migration, giving an exceptionally stable sila-alkene complex with the copper. As an alternative path to a metal carbene, we have used ESI to form a complex between the copper (I) phenanthroline and betaine (N, N, N-trimethylglycine). Under CID, this complex wills decarboxylates to give a copper ylide complex. Further CID leads to loss of trimethylamine and the formation of a complex between methylene and the copper phenanthroline. Depending on the CID conditions, two isobaric products are formed. One exhibits no carbene reactivity and the other readily gives carbene behavior with alkenes. The former is likely a metal-ligand insertion product, and the latter is the true metal carbene species. We explored the reactions of the carbene with electron-rich alkenes, such as ethyl vinyl ether and 3, 4-dihydro-2H-pyran, and electron-deficient alkenes, such as trichloroethylene.
|
2 |
Molecular Characterization of Light-Absorbing Components in Atmospheric Organic AerosolKyla Sue Anne Siemens (18364617) 17 April 2024 (has links)
<p dir="ltr">Atmospheric organic aerosols (OA) have diverse compositions and undergo complex reactions and transformations within the atmosphere, leading to profound impacts on air quality, climate, and atmospheric chemistry. In particular, these aerosols play an important role in Earth's effective radiative forcing (ERF) through interactions with solar radiation, absorbing and scattering sunlight and terrestrial radiation. These interactions result in a warming and cooling effect on the climate, respectively. This dissertation seeks to unravel the intricate molecular characteristics of atmospheric OA, focusing specifically on its light-absorbing components, known as ‘Brown Carbon’ (BrC), and aims to comprehend its dynamic interplay within the atmosphere. The research employs state-of-the-art multi-modal mass spectrometry techniques to investigate atmospheric OA derived from the combustion of fossil fuels and biomass burning. Through a combination of controlled laboratory experiments and real-world sample analyses, these works provide molecular-level insights crucial for source apportionment and predictive modeling of OA fate. Chapter 2 details the instrumentation and data analysis methods, laying a robust foundation for subsequent chapters.</p><p dir="ltr">Chapter 3 delves into the investigation of smoldering-phase biomass burning organic aerosols (BBOA) and introduces an innovative fractionation method for high-level molecular characterization, targeted to streamline source apportionment of BBOA. This chapter also presents an extensive assessment of particle-to-gas partitioning of BBOA, providing valuable information for modeling atmospheric lifetimes and fate. In Chapter 4, a comparative analysis of BBOA from wild and agricultural fires is conducted, employing advanced molecular characterization techniques. Chapter 5 showcases the synergistic use of multi-modal mass spectrometry techniques to probe the chemical evolution of individual BBOA components. Finally, Chapter 6 examines the molecular analysis of secondary OA (SOA) generated from the photooxidation of a fossil-fuel proxy.</p><p dir="ltr">The comprehensive molecular-level studies presented contribute essential insights for climate modeling, aiding in resolving uncertainties associated with OA's impact on global ERF. The research not only challenges existing analytical methods but also introduces novel approaches for obtaining relevant information about atmospheric OA components. Overall, this work advances our understanding of the intricate dynamics of atmospheric aerosols, facilitating more accurate climate predictions and addressing uncertainties surrounding their net radiative impact.</p>
|
Page generated in 0.0933 seconds