• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analysis of a shared mating in V2.

Bjørnstad Pedersen, Lars January 2014 (has links)
In this master thesis we investigate, from a topological point of view and without applying Thurston´s Theorem, why the mating of the so called basilica polynomial <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-1%7D(z)=z%5E%7B2%7D-1" /> and the dendrite <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7Bi%7D(z)=z%5E%7B2%7D+i" /> is shared with the mating of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-1%7D" /> and the dendrite <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-i%7D(z)=z%5E%7B2%7D-i" />. Both these matings equal the rational map <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?R_%7B3%7D(z)=%5Cfrac%7B3%7D%7Bz%5E%7B2%7D+2z%7D" />. Defined in the thesis are for both matings homeomorphic changes of coordinates<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cpsi_%7B-1%7D%5E%7B%5Cpm%7D" /> from the set <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?L=%5Coverset%7B%5Ccirc%7D%7BK%7D%5Cleft(f_%7B-1%7D%20%5Cright)%5Ccup%5Cleft(%5Ccup_%7Bn=0%7D%5E%7B%5Cinfty%7Df_%7B-1%7D%5E%7B%5Ccirc(-n)%7D(z_%7B%5Calpha%7D)%5Cright)" /> to the Fatou and Julia set of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?R_%7B3%7D" />. Here <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?K%5Cleft(f_%7B-1%7D%20%5Cright)" /> is the filled Julia set of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-1%7D" /> and <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?z_%7B%5Calpha%7D" /> is the <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Calpha" />-fixed point of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?K%5Cleft(f_%7B-1%7D%20%5Cright)" />. / I detta examensarbete undersöker vi, från en topologisk synvinkel och utan applicering av Thurstons teorem, varför matchningen av det så kallade basilikapolynomet <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-1%7D(z)=z%5E%7B2%7D-1" /> och dendriten <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7Bi%7D(z)=z%5E%7B2%7D+i" /> är delad med matchningen av <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-1%7D" /> och dendriten <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-i%7D(z)=z%5E%7B2%7D-i" />. Båda dessa matchningar är lika med den rationella avbildningen  <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?R_%7B3%7D(z)=%5Cfrac%7B3%7D%7Bz%5E%7B2%7D+2z%7D" />. Definierat i examensarbetet är för båda matchningarna homoemorfa koordinatbyten<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cpsi_%7B-1%7D%5E%7B%5Cpm%7D" /> från mängden<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?L=%5Coverset%7B%5Ccirc%7D%7BK%7D%5Cleft(f_%7B-1%7D%20%5Cright)%5Ccup%5Cleft(%5Ccup_%7Bn=0%7D%5E%7B%5Cinfty%7Df_%7B-1%7D%5E%7B%5Ccirc(-n)%7D(z_%7B%5Calpha%7D)%5Cright)" /> till Fatou- och Juliamängden av <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?R_%7B3%7D" />. Här är <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?K%5Cleft(f_%7B-1%7D%20%5Cright)" /> den ifyllda Juliamängden av avbildningen <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?f_%7B-1%7D" /> och <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?z_%7B%5Calpha%7D" /> är den <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Calpha" />-fixerade punkten i <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?K%5Cleft(f_%7B-1%7D%20%5Cright)" />.

Page generated in 0.0715 seconds