• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioinspired surfaces and materials

Schirhagl, Romana, Weder, Christoph, Lei, Jiang, Werner, Carsten, Textor, Hans Marcus 07 January 2020 (has links)
Over millions of years evolution has optimized the properties of materials via natural selection for many specific purposes. Indeed, natural materials have unique properties which come very close to perfection. Cells, for instance, are able to carry out intricate sequences of chemical reactions that are difficult or impossible to carry out ex vivo, cell membranes are the most complex selective and responsive semipermeable membranes that exist, and animal shells exhibit a clever nanostructure that renders them hard and tough at the same time. In short, materials scientists can learn a lot from nature’s materials. The perfection and performance of nature’s materials not only spark fascination, but also trigger the question as to why certain structures or surfaces exhibit outstanding properties and inspire research towards new materials. While the materials of living nature impressively serve dedicated purposes, they are formed under restricted conditions. For instance, they have to be designed to function under a narrowly defined set of physiological conditions, and can only be composed of building blocks an organism has available. Without these restrictions, material scientists can design entirely new materials or surfaces.

Page generated in 0.1123 seconds