1 |
PRE- AND POSTNATAL FACTORS THAT INDUCE PATHOLOGICAL REMODELING OF CARDIAC STRUCTURE AND FUNCTIONLi, Yi-Jia, 0000-0002-5596-999X January 2023 (has links)
Cardiovascular diseases (CVD) have been the leading cause of death worldwide for many years, making it a devasting and increasing concern across the globe. The risk factors of CVD include postnatal factors and prenatal factors. For the prenatal CVD risk factors study, we focused on maternal hypothyroidism (MH), which is a common clinical condition. Studies have shown MH progeny have increased susceptibility to both acquired cardiovascular disease in adulthood and congenital heart disease, but the underlying mechanisms are not well understood. The goal of the present experiments was to test the hypothesis that MH reduces early postnatal cardiac myocyte proliferation in the progeny so that their adult hearts have a smaller complement of cardiac myocytes, which leads to adverse cardiac disease responses. MH model was induced by thyroidectomy (TX) with total thyroxine (TT4) under 1ng/dl after surgery. The progeny from mice that underwent Sham or TX surgery was termed WT (wild type) or MH (maternal hypothyroidism) progeny, respectively. Hearts were collected from WT and MH progeny to determine heart weight (HW), CM size, CM proliferation, and cell culture. RNA-seq was performed on heart tissue at postnatal day 5 (P5) and P60. Transverse Aortic Constriction (TAC) was performed to cause pressure overload-induced cardiac hypertrophy and/or heart failure (HF) in adult WT and MH progeny. ECHO (in-vivo) and histological (ex-vivo) studies were performed at specific times after TAC. Thyroid hormone treatment (levothyroxine, T4) for MH mother was administered.
The results showed that the Heart weight (HW) to body weight (BW) ratio at P60 was no difference between groups, but the MH progeny had a larger CM size, consistent with fewer CM numbers. MH progeny had lower EdU+, Ki67+, and PH3+ CMs, and fewer mononucleated CMs, which shows they had a decreased CM proliferation capacity. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH progeny, including Bmp10. Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation in the presence of thyroid hormone. In adult progeny, RNA-seq data showed that MH mice had genes upregulated in the inflammatory response before TAC surgery. Six weeks after TAC, the MH progeny had a greater HW/BW ratio, larger CM size, and more severe LV fibrosis consistent with more severe cardiac pathological remodeling compared with WT progeny. T4 supplemented treatment for MH mothers preserved progeny’s early postnatal CM proliferation capacity and the excessive pathological remodeling after TAC. Concluding, CM proliferation during the early postnatal development stage was significantly attenuated in MH progeny, which results in fewer CMs and CM hypertrophy in adult MH progeny. These changes are associated with worse cardiac disease responses under pressure overload in adult MH progeny.
For the postnatal CVD risk factors study, we focused on calcium overload and metabolic disorder, which play a critical role in heart failure with preserved ejection fraction (HFpEF). HFpEF is defined as HF with an EF ≥50% and elevated cardiac diastolic filling pressures. The underlying causes of HFpEF are multifactorial and not well-defined. A transgenic mouse with low levels of cardiomyocyte (CM)-specific inducible Cavβ2a expression (β2a-Tg mice) showed increased cytosolic CM Ca2+, and modest levels of CM hypertrophy and fibrosis. This study aimed to determine if β2a-Tg mice develop an HFpEF phenotype when challenged with two additional stressors, a high-fat diet (HFD) and L-NAME (LN). Four-month-old wild-type (WT) and β2a-Tg mice were given either normal chow (WT-N, β2a-N) or HFD and/or L-NAME (WT-HFD, WT-LN, WT-HFD-LN, β2a-HFD, β2a-LN, and β2a-HFD-LN). Some animals were treated with the HDAC (hypertrophy regulators) inhibitor suberoylanilide hydroxamic acid (SAHA) (β2a-HFD-LN-SAHA). Echocardiography was performed monthly. After four months of treatment, terminal studies were performed, including invasive hemodynamics and organ weight measurements. Cardiac tissue was collected.
Our results showed that four months of HFD plus L-NAME treatment did not induce a profound HFpEF phenotype in FVB WT mice. β2a-HFD-LN (3-Hit) mice developed features of HFpEF, including increased natriuretic peptide (ANP) levels, preserved EF, diastolic dysfunction, robust CM hypertrophy, increased M2 macrophage population, and myocardial fibrosis. SAHA reduced the HFpEF phenotype in the 3-Hit mouse model by attenuating these effects. Concluding, the 3-Hit mouse model induced a reliable HFpEF phenotype with CM hypertrophy, cardiac fibrosis, and an increased M2 macrophage population. This model could be used for identifying and preclinical testing of novel therapeutic strategies. / Biomedical Sciences
|
Page generated in 0.3744 seconds