• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Embedding an object calculus in the unifying theories of programming

Smith, Michael Anthony January 2010 (has links)
Hoare and He's Unifying Theories of Programming (UTP) provides a rich model of programs as relational predicates. This theory is intended to provide a single framework in which any programming paradigms, languages, and features, can be modelled, compared and contrasted. The UTP already has models for several programming formalisms, such as imperative programming, higher-order programming (e.g. programing with procedures), several styles of concurrent programming (or reactive systems), class-based object-orientation, and transaction processing. We believe that the UTP ought to be able to represent all significant computer programming language formalisms, in order for it to be considered a unifying theory. One gap in the UTP work is that of object-based object-orientation, such as that presented in Abadi and Cardelli's untyped object calculi (sigma-calculi). These sigma-calculi provide a prominent formalism of object-based object-oriented (OO) programs, which models programs as objects. We address this gap within this dissertation by presenting an embedding of an Abadi--Cardelli-style object calculus in the UTP. More formally, the thesis that his dissertation argues is that it is possible to provide an object-based object rientation to the UTP, with value- and reference-based objects, and a fully abstract model of references. We have made three contributions to our area of study: first, to extend the UTP with a notion of object-based object orientation, in contrast with the existing class-based models; second, to provide an alternative model of pointers (references) for the UTP that supports both value-based compound values (e.g. objects) and references (pointers), in contrast to existing UTP models with pointers that have reference-based compound values; and third, to model an Abadi-Cardelli notion of an object in the UTP, and thus demonstrate that it can unify this style of object formalism.
2

Models for adaptive feeding and population dynamics in plankton

Piltz, Sofia Helena January 2014 (has links)
Traditionally, differential-equation models for population dynamics have considered organisms as "fixed" entities in terms of their behaviour and characteristics. However, there have been many observations of adaptivity in organisms, both at the level of behaviour and as an evolutionary change of traits, in response to the environmental conditions. Taking such adaptiveness into account alters the qualitative dynamics of traditional models and is an important factor to be included, for example, when developing reliable model predictions under changing environmental conditions. In this thesis, we consider piecewise-smooth and smooth dynamical systems to represent adaptive change in a 1 predator-2 prey system. First, we derive a novel piecewise-smooth dynamical system for a predator switching between its preferred and alternative prey type in response to prey abundance. We consider a linear ecological trade-off and discover a novel bifurcation as we change the slope of the trade-off. Second, we reformulate the piecewise-smooth system as two novel 1 predator-2 prey smooth dynamical systems. As opposed to the piecewise-smooth system that includes a discontinuity in the vector fields and assumes that a predator switches its feeding strategy instantaneously, we relax this assumption in these systems and consider continuous change in a predator trait. We use plankton as our reference organism because they serve as an important model system. We compare the model simulations with data from Lake Constance on the German-Swiss-Austrian border and suggest possible mechanistic explanations for cycles in plankton concentrations in spring.

Page generated in 0.0657 seconds