• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal Strategies for Stopping Near the Top of a Sequence

Islas Anguiano, Jose Angel 12 1900 (has links)
In Chapter 1 the classical secretary problem is introduced. Chapters 2 and 3 are variations of this problem. Chapter 2, discusses the problem of maximizing the probability of stopping with one of the two highest values in a Bernoulli random walk with arbitrary parameter p and finite time horizon n. The optimal strategy (continue or stop) depends on a sequence of threshold values (critical probabilities) which has an oscillating pattern. Several properties of this sequence have been proved by Dr. Allaart. Further properties have been recently proved. In Chapter 3, a gambler will observe a finite sequence of continuous random variables. After he observes a value he must decide to stop or continue taking observations. He can play two different games A) Win at the maximum or B) Win within a proportion of the maximum. In the first section the sequence to be observed is independent. It is shown that for each n>1, theoptimal win probability in game A is bounded below by (1-1/n)^{n-1}. It is accomplished by reducing the problem to that of choosing the maximum of a special sequence of two-valued random variables and applying the sum-the-odds theorem of Bruss (2000). Secondly, it is assumed the sequence is i.i.d. The best lower bounds are provided for the winning probabilities in game B given any continuous distribution. These bounds are the optimal win probabilities of a game A which was examined by Gilbert and Mosteller (1966).

Page generated in 0.1109 seconds