• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Set-Checking Algorithm for Mining Maximal Frequent Itemsets from Data Streams

Lin, Pei-Ying 15 July 2011 (has links)
Online mining the maximal frequent itemsets over data streams is an important problem in data mining. The maximal frequent itemset is the itemset which the support is large or equal to the minimal support and the itemset is not the subset or superse of each itemset. Previous algorithms to mine the maximal frequent itemsets in the traditional database are not suitable for data streams. Because data streams have some characteristics: (1) continuous (2) fast (3) no data limit (4) real time (5) searching once, mining data streams have many new challenges. First, they are unrealistic to keep the entire stream in the main memory or even in a secondary storage area, since a data stream comes continuously and the amount of data is unbounded. Second, traditional methods of mining on stored datasets by multiple scans are infeasible, since the streaming data is passed only once. Third, mining streams requires fast, real-time processing in order to keep up with the high data arrival rate and mining results are expected to be available within short response time. In order to solve mining maximal frequent itemsets from data streams using the landmark window model, Mao et. al. propose the INSTANT algorithm. In the landmark window model, knowledge discovery is performed based on the values between the beginning time and the present. The advantage of using the landmark window model is that the results are correct as compared to the other models. The structure of the INSTANT algorithm is simple and it can save many memory space. But it takes long time in mining the maximal frequent itemsets. When the new transactions comes, the number of comparisons between the old transactions of INSATNT algorithm is too much. In this thesis, we propose the Set-Checking algorithm to mine frequent itemsets from data streams using the landmark window model. We use the structure of lattice to store our information. The structure of lattice records the subset relationship between the child node and the father node. For every node, we can record the itemset and the support. When the new transaction comes, we consider five relations: (1) equivalent (2) superset (3) subset (4) intersection (5) empty relations. According to the lattice structure of the five sets , we can add the transaction and the renew support efficiently. From our simulation result, we find that the process time of our Set-Checking algorithm is faster than that of the INSTANT algorithm.
2

A Subset-Lattice Algorithm for Mining Maximal Frequent Itemsets over a Data Stream Sliding Window

Wang, Syuan-Yun 09 July 2012 (has links)
Online mining association rules in data streams is an important field in the data mining. Among them, mining the maximal frequent itemsets is also an important issue. A frequent itemset is called maximal if it is not a subset of any other frequent itemset. The set of all the maximal frequent itemsets is denoted as the maximal frequent itemset. Because data streams are continuous, high speed, unbounded, and real time. As a result, we can only scan once for the data streams. Therefore, the previous algorithms to mine the maximal frequent itemsets in the traditional databases are not suitable for the data streams. Furthermore, many applications are interested in the recent data streams, and the sliding window is the model which deal with the most recent data streams. In the sliding window model, a window size is required. One of the algorithms for mining the maximal frequent itemsets based on the sliding window model is called the MFIoSSW algorithm. The MFIoSSW algorithm uses a compact structure to mine the maximal frequent itemsets. It uses an array-based structure A to store the maximal frequent itemsets and other helpful itemsets. But it takes long time to mine the maximal frequent itemsets. When the new transaction comes, the number of comparison between the new transaction and the old transactions is too much. Therefore, in this project, we propose a sliding window approach, the Subset-Lattice algorithm. We use the lattice structure to store the information of the transactions. The structure of the lattice stores the relationship between the child node and the father node. In each node, we record the itemset and the support. When the new transaction comes, we consider five relations: (1) equivalent, (2) subset, (3) intersection, (4) empty set, (5) superset. With this five relations, we can add the new transactions and update the support efficiently.

Page generated in 0.0596 seconds