Spelling suggestions: "subject:"maximino NSGA-II""
1 |
Planification et Suivi de Mouvement d’un Système de Manipulateur Mobile non-holonome à deux bras / Motion Planning and Tracking of a Hyper Redundant Non-holonomic Mobile Dual-arm ManipulatorWei, Yan 18 June 2018 (has links)
Cette thèse se situe dans la planification et le suivi de mouvement d’un humanoïde mobile à deux bras. Premièrement, MDH est utilisé pour la modélisation cinématique. Afin de surmonter les insuffisances de la méthode d’Euler-Lagrange qui nécessitent des calculs d’énergie et ses dérivées partielles, la méthode de Kane est utilisée. En plus, la stabilité physique est analysée et un contrôleur est conçu. Deuxièmement, un algorithme avancée MaxiMin NSGA-II est proposée pour concevoir l’orientation et la position optimales de la plate-forme mobile (PB) et la configuration optimale du manipulateur supérieur (MS) étant donnée uniquement la pose initiale et les positions et orientations souhaitées des EEs. Un algorithme à connexion directe combinant BiRRT et la gradient-descente est conçu pour réaliser la transition de la pose initiale à la pose optimale, et une méthode d'optimisation géométrique est conçue pour optimiser et cohérer le chemin. En outre, les motions en avant sont obtenues en attribuant des orientations pour MB indiquant ainsi l'intention du robot. Afin de résoudre le problème d'échec de l’algorithme hors ligne, un algorithme en ligne est proposé en estimant les motions des obstacles dynamiques. De plus, afin d'optimiser les via-poses, un algorithme basé sur les via-points des EEs et MOGA est proposé en optimisant quatre fonctions objectives. Enfin, le problème de suivi de motion est étudié étant donné les motions des EEs dans l'espace de tâche. Au lieu de contrôler la motion absolue, deux motions relatives sont introduites pour réaliser la coordination et la coopération entre MB et MS. De plus, une technique mWLN est proposée pour éviter les limites des joints. / This thesis focuses on the motion planning and tracking of a dual-arm mobile humanoid. First, MDH is used for kinematic modeling. The co-simulation via Simulink-Adams on prototype is realized to validate the effectiveness of RBFNN controller. In order to overcome the shortcomings of Euler-Lagrange’s formulations that require calculating energy and energy derivatives, Kane’s method is used. In addition, physical stability is analyzed based on Kane’s method and a controller is designed using back-stepping technique. Secondly, an improved MaxiMin NSGA-II is proposed to design the mobile base’s (MB) optimal position-orientation and the upper manipulator’s (UM) optimal configuration given only the initial pose and end-effectors’ (EEs) desired positions-orientations. A direct connect algorithm combining BiRRT and gradient-descent is designed to plan the transition from initial pose to optimal pose, and a geometric optimization method is designed to optimize and cohere the path. In addition, forward motions are obtained by assigning orientations for MB thus indicating robot’s intention. In order to solve the failure problem of offline algorithm, an online algorithm is proposed while estimating dynamic obstacles’ motions. In addition, in order to optimize via-poses, an algorithm based on EEs’ via-points and MOGA is proposed by optimizing four via-pose-based objective functions. Finally, the motion tracking problem is studied given EEs’ motions in the task space. Instead of controlling the absolute motion, two relative motions are introduced to realize the coordination and cooperation between MB and UM. In addition, an modulated WLN technique is proposed to avoid joints’ limits.
|
Page generated in 0.0329 seconds