• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding The Solar Magnetic Fields :Their Generation, Evolution And Variability

Chatterjee, Piyali 07 1900 (has links)
The Sun, by the virtue of its proximity to Earth, serves as an excellent astrophysical laboratory for testing our theoretical ideas. The Sun displays a plethora of visually awe-inspiring phenomena including flares, prominences, sunspots, corona, CMEs and uncountable others. It is now known that it is the magnetic field of the Sun which governs all these and also the geomagnetic storms at the Earth, which owes its presence to the interaction between the geomagnetic field and the all-pervading Solar magnetic field in the interplanetary medium. Since the solar magnetic field affects the interplanetary space around the Earth in a profound manner, it is absolutely essential that we develop a comprehensive understanding of the generation and manifestation of magnetic fields of the Sun. This thesis aims at developing a state-of-the-art dynamo code SURYA1taking into account important results from helioseismology and magnetohydrodynamics. This dynamo code is then used to study various phenomenon associated with solar activity including evolution of solar parity, response to stochastic fluctuations, helicity of active regions and prediction of future solar cycles. Within last few years dynamo theorists seem to have reached a consensus on the basic characteristics of a solar dynamo model. The solar dynamo is now believed to be comprised of three basic processes: (i)The toroidal field is produced by stretching of poloidal field lines primarily inside the tachocline – the region of strong radial shear at the bottom of the convection zone. (ii) The toroidal field so formed rises to the surface due to magnetic buoyancy to form active regions. (iii) Poloidal field is generated at the surface due to decay of tilted active regions – an idea attributed to Babcock (1961) & Leighton (1969). The meridional circulation then carries the poloidal field produced near the surface to the tachocline. The profile of the solar differential rotation has now been mapped by helioseismology and so has been the poleward branch of meridional circulation near the surface. The model I describe in this thesis is a two-dimensional kinematic solar dynamo model in a full sphere. Our dynamo model Surya was developed over the years in stages by Prof. Arnab Rai Choudhuri, Dr. Mausumi Dikpati, Dr. Dibyendu Nandy and myself. We provide all the technical details of our model in Chap. 2 of this thesis. In this model we assume the equatorward branch of the meridional circulation (which hasn’t been observed yet), to penetrate slightly below the tachocline (Nandy & Choudhuri 2002, Science, 296, 1671). Such a meridional circulation plays an important role in suppressing the magnetic flux eruptions at high latitudes. The only non-linearity included in the model is the prescription of magnetic buoyancy. Our model is shown to reproduce various aspects of observational data, including the phase relation between sunspots and the weak, efficient. An important characteristic of our code is that it displays solar-like dipolar parity (anti-symmetric toroidal fields across equator) when certain reasonable conditions are satisfied, the most important condition being the requirement that the poloidal field should diffuse efficiently to get coupled across the equator. When the magnetic coupling between the hemispheres is enhanced by either increasing the diffusion or introducing an α ff distributed throughout the convection zone, we find that the solutions in the two hemispheres evolve together with a single period even when we make the meridional circulation or the α effect different in the two hemispheres. The effect of diffusive coupling in our model is investigated in Chap. 3. After having explored the regular behaviour of the solar cycle using the dynamo code we proceed to study the irregularities of the Solar cycle.We introduce stochastic fluctuations in the poloidal source term at the solar surface keeping the meridional circulation steady for all the numerical experiments. The dynamo displays oscillatory behaviour with variable cycle amplitudes in presence of fluctuations with amplitudes as large as 200%. We also find a statistically significant correlation between the strength of polar fields at the endofone cycle and the sunspot number of the next cycle. In contrast to this there exist a very poor correlation between the sunspot number of a cycle and the polar field formed at its end. This suggests that during the declining phase of the sunspot cycle poloidal field generation from decaying spots takes place via the Babcock-Leighton mechanism which involves randomness and destroys the correlation between sunspot number of a cycle and the polar at its end. In addition to this we also see that the time series of asymmetries in the sunspot activity follows the time series of asymmetries in the polar field strength with a lag of 5 years. We also compare our finding with available observational data. Although systematic measurements of the Sun’s polar magnetic field exist only from mid-1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. We use these findings about the correlation of polar fields with sunspots to develop an elegant method for predicting future solar cycles. We feed observational data for polar fields during the minima of cycle n into our dynamo model and run the code till the next minima in order to simulate the sunspot number curve for cycle n+1. Our results fit the observed sunspot numbers of cycles 21-23 reasonably well and predict that cycle 24 will be about 30–35% weaker than cycle 23. We fit that the magnetic diffusivity in the model plays an important role in determining the magnetic memory of the Solar dynamo. For low diffusivity, the amplitude of a sunspot cycle appears to be a complex function of the history of the polar field of earlier cycles. Only if the magnetic diffusivity within the convection zone is assumed to be high (of order 1012cms−1), we are able to explain the correlation between the polar fiat a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid-latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. The above ideas are put forward in Chap. 6. We next come to an important product of the dynamo process namely the magnetic helicity. It has been shown independently by many research groups that the mean value of the normalized current helicity αp= B (Δ×B)/B2in solar active regions is of the order of 10−8m−1, predominantly negative in the northern hemisphere, positive in the southern hemisphere. Choudhuri (2003, Sol. Phys., 215, 31)developed a model for production of the helicity of the required sign in a Babcock-Leighton Dynamo by wrapping of poloidal field lines around a fluxtube rising through the convection zone. In Chap. 7 we calculate helicities of solar active regions based on this idea. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we fit that during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. After calculating the sign and magnitude of helicity of the sunspots we worry about the distribution of helicity inside a sunspot. In Chap. 8 we model the penetration of a wrapped up background poloidal field into a toroidal magnetic flux tube rising through the solar convective zone. The rise of the straight, cylindrical flux tube is followed by numerically solving the induction equation in a comoving Lagrangian frame, while an external poloidal magnetic field is assumed to be radially advected onto the tube with a speed corresponding to the rise velocity. One prediction of our model is the existence of a ring of reverse current helicity on the periphery of active regions. On the other hand, the amplitude of the resulting twist depends sensitively on the assumed structure (ffvs. concentrated/intermittent) of the active region magnetic field right before its emergence, and on the assumed vertical profile of the poloidal field. Nevertheless, in the model with the most plausible choice of assumptions a mean twist comparable to the observational results. Our results indicate that the contribution of this mechanism to the twist can be quite find under favourable circumstances it can potentially account for most of the current helicity observed in active regions.
2

Détermination des coefficients de transport turbulent et analyse des cycles magnétiques produits dans un modèle dynamo en champ moyen avec et sans rétroaction magnétique

Simard, Corinne 12 1900 (has links)
Avec les récents développements obtenus grâce aux modèles globaux magnétohydrodynamiques en trois dimensions de la convection solaire, il est désormais possible de simuler des champs magnétiques structurés à grande échelle et présentant des inversions de polarité bien synchronisées dans chaque hémisphère. Ces modèles qui n'incluent, pour la plupart, aucune modélisation de la surface du Soleil génèrent donc leur dynamo avec l'action de la force électromotrice turbulente (FEM) et de la rotation différentielle uniquement. À partir de cette FEM, différentes techniques peuvent être utilisées pour extraire les coefficients de transport turbulent. Notamment, différents auteurs ont obtenu un tenseur alpha (coefficient du premier ordre) dont les 9 composantes présentent des amplitudes du même ordre, remettant en doute l'approximation faite dans le cas des modèles dynamo de type alphaOmega qui ne tient en compte qu’une de composante du tenseur. À partir d'un code d'analyse par décomposition en valeurs singulières pour évaluer les coefficients du tenseur alpha, nous avons généralisé la procédure pour extraire 18 des composantes du tenseur de deuxième ordre (tenseur beta). Les tenseurs alpha et beta obtenus par cette nouvelle procédure tel qu'appliquée aux sorties du modèle global EULAG-MHD, sont similaires aux tenseurs alpha et beta équivalant obtenus en utilisant l'approximation « Second Order Correlation Approximation ». À l'aide des coefficients de transport turbulent du premier ordre introduit dans un modèle dynamo en champ moyen, nous avons ensuite étudié certaines solutions magnétiques présentant des doubles dynamos. Cette analyse avait pour but de comparer les résultats obtenus par ce modèle simplifié caractérisé par la FEM provenant de EULAG-MHD aux résultats de EULAG-MHD directement. Cette preuve de concept nous a permis de démontrer que l'oscillation observée dans le champ magnétique en surface de EULAG-MHD pouvait provenir de l'action inductive d'une seconde dynamo. Une oscillation biennale est également observée dans plusieurs indices d'activité solaire dont l'origine n'est toujours pas établie. Il est évident que les deux modèles décrits ci-haut et le Soleil opèrent dans des régimes physiques différents. Toutefois, malgré leurs différences, le fait qu'il soit relativement facile de produire une seconde dynamo dans EULAG-MHD et dans le modèle en champ moyen indique que l'action inductive de la FEM peut facilement générer deux dynamos. Finalement, dans le but d'étudier les périodes de grands minima, phénomène encore non reproduit par les modèles globaux, nous avons ajouté une rétroaction magnétique sur l'écoulement azimutal au modèle dynamo cinématique en champ moyen décrit ci-haut. En analysant les solutions de ce modèle dynamo de type alpha2Omega non cinématique, nous avons pu reproduire la tendance observée jusqu'ici uniquement dans les modèles de type alphaOmega selon laquelle le nombre de nombre de Prandtl magnétique contrôle le rapport des périodes générées. De plus, en analysant une solution sur 50 000 ans présentant des périodes de grands minima et maxima non périodiques, nous avons obtenu une distribution de temps de séparation des grands minima presque exponentielle, caractéristique observée dans les reconstructions de l'activité solaire. La rotation différentielle associée à ces périodes de grands minima présente un niveau de fluctuation de 1% par rapport au profil moyen. Ce niveau de fluctuation est d'ailleurs comparable avec les reconstructions historiques de la rotation différentielle en surface obtenues lors du grand minimum de Maunder. / The recent developments achieved by tri-dimensionals magnetohydrodynamic (3D-MHD) global simulations of solar convection allow us to generate an organized large-scale magnetic fields with well-synchronized hemispheric polarity reversal. Because the vast majority of these simulations do not include a modelization of the Sun's surface layer, the generation of their dynamo is thus solely due to the action of the turbulent electromotive force (EMF) in conjunction with differential rotation. From this EMF, different methods can be used to extract the turbulent transport coefficients. In particular, various authors found a full 9 component alpha-tensor (first order coefficients) where all the components are of the same order of magnitude. This finding calls into question the alphaOmega approximation made by the vast majority of mean field dynamo models. We generalized a first order (alpha-tensor) singular value decomposition (SVD) analysis procedure to extract the 18 additional components of the second order tensor (beta-tensor). The alpha and beta tensors obtained by this new procedure as applied to the EULAG-MHD outputs, are similar to the equivalent alpha and beta tensors obtained using the second order correlation approximation (SOCA). By introducing the first order turbulent transport coefficients in a mean field dynamo model, we study the magnetic solutions where double dynamo modes were observed. This analysis allows us to compare the mean field dynamo solutions produced with the EMF, as extracted from EULAG-MHD, with the real magnetic output of EULAG-MHD. This proof of concept demonstrated that the quasi-biennal oscillation observed in the surface toroidal magnetic field in EULAG-MHD can be produced by the inductive action of a secondary dynamo. A similar quasi-biennal oscillation signal is also observed in multiple proxies of the solar activity whose origin is still not confirmed. Although the physical set of properties under which the two numerical models described above operate are different from the Sun, the fact that both models can reproduce a secondary dynamo shows us that the inductive action of the EMF can easily produce two dynamos. Finally, in order to study epochs of grand minima that still cannot be reproduced in global 3D-MHD simulations of convection, we added a magnetic feedback on the mean azimutal flow in our kinematic mean field model. This non-kinematic alpha2Omega model was able to reproduce the tendency of the Prandtl number (Pm) to control the ratio of the modulation period. More specifically, we found an inverse relation between Pm and the ratio of the main magnetic cycle period to the grand minima occurrence period. Moreover, by analyzing a simulation of a length of 50,000 years, where aperiodic periods of grand minima and maxima are observed, we found a waiting time distribution (WTD) of the grand minima close to an exponential, a characteristic also observed in the reconstruction of the solar activity. Finally, the level of fluctuation in the surface differential rotation associated with epochs of grand minima is ~1%. This level of fluctuation was also observed in historical reconstructions of the surface differential rotation during the Maunder minimum.

Page generated in 0.0873 seconds