• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stereological Interpretation of Rock Fracture Traces on Borehole Walls and Other Cylindrical Surfaces

Wang, Xiaohai 11 October 2005 (has links)
Fracture systems or networks always control the stability, deformability, fluid and gas storage capacity and permeability, and other mechanical and hydraulic behavior of rock masses. The characterization of fracture systems is of great significance for understanding and analyzing the impact of fractures to rock mass behavior. Fracture trace data have long been used by engineers and geologists to character fracture system. For subsurface fractures, however, boreholes, wells, tunnels and other cylindrical samplings of fractures often provide high quality fracture trace data and have not been sufficiently utilized. The research work presented herein is intended to interpret fracture traces on borehole walls and other cylindrical surfaces by using stereology. The relationships between the three-dimension fracture intensity measure, P32, and the lower dimension fracture intensity measures are studied. The analytical results show that the conversion factor between the three-dimension fracture intensity measure and the two-dimension intensity measure on borehole surface is not dependent on fracture size, shape or circular cylinder radius, but is related to the orientation of the cylinder and the orientation distribution of fractures weight by area. The conversion factor between the two intensity measures is determined to be in the range of [1.0, π/2]. The conversion factors are also discussed when sampling in constant sized or unbounded fractures with orientation of Fisher distribution. At last, the author proposed estimators for mean fracture size (length and width) with borehole/shaft samplings in sedimentary rocks based on a probabilistic model. The estimators and the intensity conversion factors are tested and have got satisfactory results by Monte Carlo simulations. / Ph. D.
2

Building, Updating and Verifying Fracture Models in Real Time for Hard Rock Tunneling

Decker, Jeramy Bruyn 27 April 2007 (has links)
Fractures and fracture networks govern the mechanical and fluid flow behavior of rock masses. Tunneling and other rock mechanics applications therefore require the characterization of rock fractures based on geological data. Field investigations produce only a limited amount of data from boreholes, outcrops, cut slopes, and geophysical surveys. In tunneling, the process of excavation creates a priceless opportunity to gather more data during construction. Typically, however, these data are not utilized due to the impedance of sampling and analysis on the flow of construction, and safety concerns with sampling within unlined tunnel sections. However, the use of this additional data would increase the overall safety, quality, and cost savings of tunneling. This study deals with several aspects of the above, with the goal of creating methods and tools to allow engineers and geologists to gather and analysis fracture data in tunnels without interrupting the excavation and without compromising safety. Distribution-independent trace density and mean trace length estimators are developed using principles of stereology. An optimization technique is developed utilizing Differential Evolution to infer fracture size and shape from trace data obtained on two or more nonparallel sampling planes. A method of producing nearly bias free empirical trace length CDF's is also introduced. These new methods and tools were validated using Monte Carlo simulations. A field study was conducted in an existing tunnel allowing the above methods and tools to be further validated and tested. A relational database was developed to aid in storage, retrieval, and analysis of field data. Fracture models were built and updated using fracture data from within the tunnel. Utilization of state of the art imaging techniques allowed for remote sampling and analysis, which were enhanced by the use of 3d visualization techniques. / Ph. D.

Page generated in 0.0431 seconds