• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 35
  • Tagged with
  • 104
  • 77
  • 77
  • 68
  • 48
  • 47
  • 47
  • 26
  • 25
  • 25
  • 22
  • 21
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

New mechanisms for modelling the motion of the human ankle complex

Baldisserri, Benedetta <1984> 27 April 2012 (has links)
The relevance of human joint models was shown in the literature. In particular, the great importance of models for the joint passive motion simulation (i.e. motion under virtually unloaded conditions) was outlined. They clarify the role played by the principal anatomical structures of the articulation, enhancing the comprehension of surgical treatments, and in particular the design of total ankle replacement and ligament reconstruction. Equivalent rigid link mechanisms proved to be an efficient tool for an accurate simulation of the joint passive motion. This thesis focuses on the ankle complex (i.e. the anatomical structure composed of the tibiotalar and the subtalar joints), which has a considerable role in human locomotion. The lack of interpreting models of this articulation and the poor results of total ankle replacement arthroplasty have strongly suggested devising new mathematical models capable of reproducing the restraining function of each structure of the joint and of replicating the relative motion of the bones which constitute the joint itself. In this contest, novel equivalent mechanisms are proposed for modelling the ankle passive motion. Their geometry is based on the joint’s anatomical structures. In particular, the role of the main ligaments of the articulation is investigated under passive conditions by means of nine 5-5 fully parallel mechanisms. Based on this investigation, a one-DOF spatial mechanism is developed for modelling the passive motion of the lower leg. The model considers many passive structures constituting the articulation, overcoming the limitations of previous models which took into account few anatomical elements of the ankle complex. All the models have been identified from experimental data by means of optimization procedure. Then, the simulated motions have been compared to the experimental one, in order to show the efficiency of the approach and thus to deduce the role of each anatomical structure in the ankle kinematic behavior.
62

Dynamic analysis of the motorcycle chattering behaviour by means of symbolic multibody modelling

Leonelli, Luca <1986> 15 April 2014 (has links)
Aim of this research is the development and validation of a comprehensive multibody motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of road surfaces. A novel parametrization for the general kinematics of the motorcycle is proposed, using a mixed reference-point and relative-coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to efficiently include rigid-ring kinematics as well as road elevation and slope. The equations of motion for the multibody system are derived symbolically and the constraint equations arising from the dependent-coordinate formulation are handled using a projection technique. Therefore the resulting system of equations can be integrated in time domain using a standard ODE algorithm. The model is validated with respect to maneuvers experimentally measured on the race track, showing consistent results and excellent computational efficiency. More in detail, it is also capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, appearing during high speed cornering maneuvers, consists of a self-excited vertical oscillation of both the front and rear unsprung masses in the range of frequency between 17 and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, consistent with the experimentally measured chatter vibration. Finally, the driving mechanism for the self-excitation is highlighted and a physical interpretation is proposed.
63

Displacement Analysis of Under-Constrained Cable-Driven Parallel Robots

Abbasnejad Matikolaei, Ghasem <1984> 15 April 2014 (has links)
This dissertation studies the geometric static problem of under-constrained cable-driven parallel robots (CDPRs) supported by n cables, with n ≤ 6. The task consists of determining the overall robot configuration when a set of n variables is assigned. When variables relating to the platform posture are assigned, an inverse geometric static problem (IGP) must be solved; whereas, when cable lengths are given, a direct geometric static problem (DGP) must be considered. Both problems are challenging, as the robot continues to preserve some degrees of freedom even after n variables are assigned, with the final configuration determined by the applied forces. Hence, kinematics and statics are coupled and must be resolved simultaneously. In this dissertation, a general methodology is presented for modelling the aforementioned scenario with a set of algebraic equations. An elimination procedure is provided, aimed at solving the governing equations analytically and obtaining a least-degree univariate polynomial in the corresponding ideal for any value of n. Although an analytical procedure based on elimination is important from a mathematical point of view, providing an upper bound on the number of solutions in the complex field, it is not practical to compute these solutions as it would be very time-consuming. Thus, for the efficient computation of the solution set, a numerical procedure based on homotopy continuation is implemented. A continuation algorithm is also applied to find a set of robot parameters with the maximum number of real assembly modes for a given DGP. Finally, the end-effector pose depends on the applied load and may change due to external disturbances. An investigation into equilibrium stability is therefore performed.
64

Design and Characterization of Curved and Spherical Flexure Hinges for Planar and Spatial Compliant Mechanisms

Parvari Rad, Farid <1985> 15 April 2014 (has links)
A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.
65

A New Test Rig for In-Vitro Evaluation of the Knee Joint Behaviour

Forlani, Margherita <1986> 24 April 2015 (has links)
The evaluation of the knee joint behavior is fundamental in many applications, such as joint modeling, prosthesis and orthosis design. In-vitro tests are important in order to analyse knee behavior when simulating various loading conditions and studying physiology of the joint. A new test rig for in-vitro evaluation of the knee joint behavior is presented in this paper. It represents the evolution of a previously proposed rig, designed to overcome its principal limitations and to improve its performances. The design procedure and the adopted solution in order to satisfy the specifications are presented here. Thanks to its 6-6 Gough-Stewart parallel manipulator loading system, the rig replicates general loading conditions, like daily actions or clinical tests, on the specimen in a wide range of flexion angles. The restraining actions of knee muscles can be simulated when active actions are simulated. The joint motion in response to the applied loads, guided by passive articular structures and muscles, is permitted by the characteristics of the loading system which is force controlled. The new test rig guarantees visibility so that motion can be measured by an optoelectronic system. Furthermore, the control system of the new test rig allows the estimation of the contribution of the principal leg muscles in guaranteeing the equilibrium of the joint by the system for muscle simulation. Accuracy in positioning is guaranteed by the designed tibia and femur fixation systems,which allow unmounting and remounting the specimen in the same pose. The test rig presented in this paper permits the analysis of the behavior of the knee joint and comparative analysis on the same specimen before and after surgery, in a way to assess the goodness of prostheses or surgical treatments.
66

Simulation models in biomechanics and experimental mechanics

Reggiani, Barbara <1976> 02 May 2007 (has links)
No description available.
67

Sulla ricerca del minimo dei consumi per vetture sportive

Dolcini, Enrico <1978> 04 June 2008 (has links)
La ricerca oggetto di questa tesi, come si evince dal titolo stesso, è volta alla riduzione dei consumi per vetture a forte carattere sportivo ed elevate prestazioni specifiche. In particolare, tutte le attività descritte fanno riferimento ad un ben definito modello di vettura, ovvero la Maserati Quattroporte. Lo scenario all’interno del quale questo lavoro si inquadra, è quello di una forte spinta alla riduzione dei cosiddetti gas serra, ossia dell’anidride carbonica, in linea con quelle che sono le disposizioni dettate dal protocollo di Kyoto. La necessità di ridurre l’immissione in atmosfera di CO2 sta condizionando tutti i settori della società: dal riscaldamento degli edifici privati a quello degli stabilimenti industriali, dalla generazione di energia ai processi produttivi in senso lato. Nell’ambito di questo panorama, chiaramente, sono chiamati ad uno sforzo considerevole i costruttori di automobili, alle quali è imputata una percentuale considerevole dell’anidride carbonica prodotta ogni giorno e riversata nell’atmosfera. Al delicato problema inquinamento ne va aggiunto uno forse ancor più contingente e diretto, legato a ragioni di carattere economico. I combustibili fossili, come tutti sanno, sono una fonte di energia non rinnovabile, la cui disponibilità è legata a giacimenti situati in opportune zone del pianeta e non inesauribili. Per di più, la situazione socio politica che il medio oriente sta affrontando, unita alla crescente domanda da parte di quei paesi in cui il processo di industrializzazione è partito da poco a ritmi vertiginosi, hanno letteralmente fatto lievitare il prezzo del petrolio. A causa di ciò, avere una vettura efficiente in senso lato e, quindi, a ridotti consumi, è a tutti gli effetti un contenuto di prodotto apprezzato dal punto di vista del marketing, anche per i segmenti vettura più alti. Nell’ambito di questa ricerca il problema dei consumi è stato affrontato come una conseguenza del comportamento globale della vettura in termini di efficienza, valutando il miglior compromesso fra le diverse aree funzionali costituenti il veicolo. Una parte consistente del lavoro è stata dedicata alla messa a punto di un modello di calcolo, attraverso il quale eseguire una serie di analisi di sensibilità sull’influenza dei diversi parametri vettura sul consumo complessivo di carburante. Sulla base di tali indicazioni, è stata proposta una modifica dei rapporti del cambio elettro-attuato con lo scopo di ottimizzare il compromesso tra consumi e prestazioni, senza inficiare considerevolmente queste ultime. La soluzione proposta è stata effettivamente realizzata e provata su vettura, dando la possibilità di verificare i risultati ed operare un’approfondita attività di correlazione del modello di calcolo per i consumi. Il beneficio ottenuto in termini di autonomia è stato decisamente significativo con riferimento sia ai cicli di omologazione europei, che a quelli statunitensi. Sono state inoltre analizzate le ripercussioni dal punto di vista delle prestazioni ed anche in questo caso i numerosi dati rilevati hanno permesso di migliorare il livello di correlazione del modello di simulazione per le prestazioni. La vettura con la nuova rapportatura proposta è stata poi confrontata con un prototipo di Maserati Quattroporte avente cambio automatico e convertitore di coppia. Questa ulteriore attività ha permesso di valutare il differente comportamento tra le due soluzioni, sia in termini di consumo istantaneo, che di consumo complessivo rilevato durante le principali missioni su banco a rulli previste dalle normative. L’ultima sezione del lavoro è stata dedicata alla valutazione dell’efficienza energetica del sistema vettura, intesa come resistenza all’avanzamento incontrata durante il moto ad una determinata velocità. Sono state indagate sperimentalmente le curve di “coast down” della Quattroporte e di alcune concorrenti e sono stati proposti degli interventi volti alla riduzione del coefficiente di penetrazione aerodinamica, pur con il vincolo di non alterare lo stile vettura. / The present research is focused completely on the fuel consumption reduction for a high performance sports vehicle, specifically, the Maserati Quattroporte. The scenario in which this research takes place is that of a strong push to reduce greenhouse gases (notably, carbon dioxide, CO2), in accordance with the Kyoto protocol’s statements. The necessity in containing CO2 emissions are conditioning each field of our society: from heating of private houses to industrial buildings; from energy generation to production processes in general. Within this context, automotive OEM ( Original Equipment Manufacturer ) are clearly called on because of the high amount of CO2 produced every day by automobiles all over the world. Beside the delicate issue of emissions, there is another, perhaps even more urgent and contingent one pertaining to the socio-economic situation: fossil fuels, are recognised as a non-renewable source of energy and their availability is connected with specific areas of the world. Moreover, the socio-political situation that Middle East is facing and the increasing demand due to growth of new markets, have recently made the price of oil rise at an alarming rate. For this reason, energy efficiency in general and low fuel consumption are becoming evermore appreciated and important marketing factors, even for the high class vehicles. During this work, the fuel consumption problem has been approached as a consequence of the overall car efficiency, searching for the best trade off among the different functional areas constituting the whole vehicle. An important part of the research was spent on the development and optimisation of a simulation model, which allowed evaluation and sensitivity of different parameters which influence the vehicles fuel consumption to be investigated. Several calculations were performed and their results were exploited in order to suggest a modification to the original gear ratios. The new ratios proposed for the electro-actuated transmission, were thought to best optimise the compromise between fuel consumption and performance, with special attention not to penalise the latter too much. The new solution was actually built and tested on a prototype which showed an important benefit in terms of fuel consumption reduction, both in the European and American Standard cycles ( NEDC, FTP 75 ). The experimental results were used to improve the correlation of the theoretical model whose global reliability has proved to be efficient and robust. The new gear ratios were also evaluated from the point of view of car performance and the global response was definitely acceptable. The accuracy of the calculation model was increased further by these new activities and due to the high amount of experimental information collected. Another part of the work was dedicated to the comparison between the new version of electro-actuated transmission and a prototype Maserati Quattroporte with automatic drive and torque converter. Thanks to this activity it was possible to analyse the different behaviour of the two solutions in terms of instantaneous and global fuel consumption during the standard tests. The final section was focused on the evaluation of the energy efficiency of the vehicle system referring to the resistance that the car has to overcome in order to maintain a certain constant speed. The “coast down” curves for the Maserati Quattroporte and for some other models of the same market segment were acquired experimentally. This enabled suggestions to improve the aerodynamic resistance to be made, with the strict constraint of keeping the vehicle style and outer appearance absolutely unchanged.
68

Studio del comportamento meccanico di smalti porcellanati per substrati metallici

Rossetti, Luigi <1978> 23 April 2008 (has links)
Composite porcelain enamels are inorganic coatings for metallic components based on a special ceramic-vitreous matrix in which specific additives are randomly dispersed. The ceramic-vitreous matrix is made by a mixture of various raw materials and elements and in particular it is based on boron-silicate glass added with metal oxides(1) of titanium, zinc, tin, zirconia, alumina, ecc. These additions are often used to improve and enhance some important performances such as corrosion(2) and wear resistance, mechanical strength, fracture toughness and also aesthetic functions. The coating process, called enamelling, depends on the nature of the surface, but also on the kind of the used porcelain enamel. For metal sheets coatings two industrial processes are actually used: one based on a wet porcelain enamel and another based on a dry-silicone porcelain enamel. During the firing process, that is performed at about 870°C in the case of a steel substrate, the enamel raw material melts and interacts with the metal substrate so enabling the formation of a continuous varying structure. The interface domain between the substrate and the external layer is made of a complex material system where the ceramic vitreous and the metal constituents are mixed. In particular four main regions can be identified, (i) the pure metal region, (ii) the region where the metal constituents are dominant compared with the ceramic vitreous components, (iii) the region where the ceramic vitreous constituents are dominant compared with the metal ones, and the fourth region (iv) composed by the pure ceramic vitreous material. It has also to be noticed the presence of metallic dendrites that hinder the substrate and the external layer passing through the interphase region. Each region of the final composite structure plays a specific role: the metal substrate has mainly the structural function, the interphase region and the embedded dendrites guarantee the adhesion of the external vitreous layer to the substrate and the external vitreous layer is characterized by an high tribological, corrosion and thermal shock resistance. Such material, due to its internal composition, functionalization and architecture can be considered as a functionally graded composite material. The knowledge of the mechanical, tribological and chemical behavior of such composites is not well established and the research is still in progress. In particular the mechanical performances data about the composite coating are not jet established. In the present work the Residual Stresses, the Young modulus and the First Crack Failure of the composite porcelain enamel coating are studied. Due to the differences of the porcelain composite enamel and steel thermal properties the enamelled steel sheets have residual stresses: compressive residual stress acts on the coating and tensile residual stress acts on the steel sheet. The residual stresses estimation has been performed by measuring the curvature of rectangular one-side coated specimens. The Young modulus and the First Crack Failure (FCF) of the coating have been estimated by four point bending tests (3-7) monitored by means of the Acoustic Emission (AE) technique(5,6). In particular the AE information has been used to identify, during the bending tests, the displacement domain over which no coating failure occurs (Free Failure Zone, FFZ). In the FFZ domain, the Young modulus has been estimated according to ASTM D6272-02. The FCF has been calculated as the ratio between the displacement at the first crack of the coating and the coating thickness on the cracked side. The mechanical performances of the tested coated specimens have also been related and discussed to respective microstructure and surface characteristics by double entry charts.
69

Progettazione con metodologie avanzate di organi di macchine sollecitati a fatica

Comandini, Matteo <1976> 23 April 2008 (has links)
No description available.
70

Sulla energia dissipata in alcuni organi di macchina

Maldotti, Sergio <1980> 05 May 2009 (has links)
Questa tesi riguarda l'analisi delle trasmissioni ad ingranaggi e delle ruote dentate in generale, nell'ottica della minimizzazione delle perdite di energia. È stato messo a punto un modello per il calcolo della energia e del calore dissipati in un riduttore, sia ad assi paralleli sia epicicloidale. Tale modello consente di stimare la temperatura di equilibrio dell'olio al variare delle condizioni di funzionamento. Il calcolo termico è ancora poco diffuso nel progetto di riduttori, ma si è visto essere importante soprattutto per riduttori compatti, come i riduttori epicicloidali, per i quali la massima potenza trasmissibile è solitamente determinata proprio da considerazioni termiche. Il modello è stato implementato in un sistema di calcolo automatizzato, che può essere adattato a varie tipologie di riduttore. Tale sistema di calcolo consente, inoltre, di stimare l'energia dissipata in varie condizioni di lubrificazione ed è stato utilizzato per valutare le differenze tra lubrificazione tradizionale in bagno d'olio e lubrificazione a “carter secco” o a “carter umido”. Il modello è stato applicato al caso particolare di un riduttore ad ingranaggi a due stadi: il primo ad assi paralleli ed il secondo epicicloidale. Nell'ambito di un contratto di ricerca tra il DIEM e la Brevini S.p.A. di Reggio Emilia, sono state condotte prove sperimentali su un prototipo di tale riduttore, prove che hanno consentito di tarare il modello proposto [1]. Un ulteriore campo di indagine è stato lo studio dell’energia dissipata per ingranamento tra due ruote dentate utilizzando modelli che prevedano il calcolo di un coefficiente d'attrito variabile lungo il segmento di contatto. I modelli più comuni, al contrario, si basano su un coefficiente di attrito medio, mentre si può constatare che esso varia sensibilmente durante l’ingranamento. In particolare, non trovando in letteratura come varia il rendimento nel caso di ruote corrette, ci si è concentrati sul valore dell'energia dissipata negli ingranaggi al variare dello spostamento del profilo. Questo studio è riportato in [2]. È stata condotta una ricerca sul funzionamento di attuatori lineari vite-madrevite. Si sono studiati i meccanismi che determinano le condizioni di usura dell'accoppiamento vite-madrevite in attuatori lineari, con particolare riferimento agli aspetti termici del fenomeno. Si è visto, infatti, che la temperatura di contatto tra vite e chiocciola è il parametro più critico nel funzionamento di questi attuatori. Mediante una prova sperimentale, è stata trovata una legge che, data pressione, velocità e fattore di servizio, stima la temperatura di esercizio. Di tale legge sperimentale è stata data un'interpretazione sulla base dei modelli teorici noti. Questo studio è stato condotto nell'ambito di un contratto di ricerca tra il DIEM e la Ognibene Meccanica S.r.l. di Bologna ed è pubblicato in [3]. / This thesis deals with the analysis of the lubrication and the cooling of geared transmissions, with the intention of minimizing power losses. A physical model was developed and calibrated for the calculation of the energy and the heat dissipated in the gearbox, for both parallel shaft and planetary geartrains. This model allows the determination of the equilibrium temperature of the oil for different operating conditions. Gearbox temperature calculation in their design is not yet widespread, but it is important, especially for compact gearboxes, as in planetary gearboxes, in which the maximum transmissible power is solely governed by thermal considerations. The model here proposed was implemented in an automatic calculation system that can be tailored to various typologies of gearboxes. This calculation technique, furthermore, allows the determination of the energy dissipated under different lubrication conditions and was used to evaluate the difference between lubrication of a dry sump and an oil mist/humid gearbox. The model was applied to the particular case of a two-stage gearbox: the first one with parallel gears and the second one with epicyclic gears. An experimental test carried out on a prototype, made within the scheme of a contract between DIEM and Brevini S.p.A. of Reggio Emilia, allowed the tuning of the model parameters [1]. Another investigation concerned the study of the energy dissipated in the meshing of two gears using a model that foresees the variations in the coefficient of friction along the contact zone. On the contrary, existing models are based on an average coefficient of friction despite recognition that it varies during meshing. In particular, in the absence of finding within published literature how the performance varies in the case of corrected profile, focus was given to the value of the energy dissipated in the gears at various changes of profile [2]. Research was conducted on the function of a power-screw linear actuator comprising a worm and nut. It was found that the temperature in the contact between the worm and the nut is the most critical parameter for the functioning of this actuator. The ongoing wear mechanisms were studied with particular emphasis to the thermal aspect of the phenomena. Within the scheme of a contract between DIEM and Ognibene Meccanica S.r.l. of Bologna, a model based on an experimental test was developed for the determination of the running temperature, given the pressure, the velocity and the service factor. This model was compared to existing theoretical approaches [3].

Page generated in 0.063 seconds