• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 39
  • 20
  • 20
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The propagation of chaos for a rarefied gas of hard spheres in vacuum

Denlinger, Ryan 20 September 2016 (has links)
<p> Lanford's theorem is the best known mathematical justification of Boltzmann's equation starting from deterministic classical mechanics. Unfortunately, Lanford's landmark result is only known to hold on a short time interval, whose size is comparable to the mean free time for a particle of gas. This limitation has only been overcome in restrictive perturbative regimes, most notably the case of an extremely rarefied gas of hard spheres in vacuum, which was studied by Illner and Pulvirenti in the 1980s. We give a complete proof of the convergence result due to Illner and Pulvirenti, building on the recent complete proof of Lanford's theorem by Gallagher, Saint-Raymond and Texier. Additionally, we introduce a notion that we call <i>nonuniform chaoticity </i> (classically known as strong one-sided chaos) which is propagated forwards in time under the microscopic dynamics, at least for the full time interval upon which uniform <i>L</i><sup>&infin;</sup> estimates are available for a specific ("tensorized'') solution of the BBGKY hierarchy. </p>
2

High-order numerical schemes for high-speed flows

Oliveira, Maria Luisa Bambozzi. January 2009 (has links)
Thesis (Ph.D.)--University of Texas at Arlington, 2009.
3

Application of Groebner bases to geometrically nonlinear analysis of axisymmetric circular isotropic plates

Harrell, Timothy M. 07 November 2014 (has links)
<p> This thesis demonstrates a new application of Groebner basis by finding an analytical solution to geometrically nonlinear axisymmetric isotropic circular plates. Because technology is becoming capable of creating materials that can perform materially in the linear elastic range while experiencing large deformation geometrically, more accurate models must be used to ensure the model will result in realistic representations of the structure. As a result, the governing equations have a highly nonlinear and coupled nature. Many of these nonlinear problems are solved numerically. Since analytic solutions are unavailable or limited to only a few simplified cases, their analysis has remained a challenging problem in the engineering community. </p><p> On the other hand, with the increasing computing capability in recent years, the application of Groebner basis can be seen in many areas of mathematics and science. However, its use in engineering mechanics has not been utilized to its full potential. The focus of this thesis is to introduce this methodology as a powerful and feasible tool in the analysis of geometrically nonlinear plate problems to find the closed form solutions for displacement, stress, moment, and transverse shearing force in the three cases defined in Chapter 4. </p><p> The procedure to determine the closed form solutions developed in the current study can be summarized as follows: 1) the von K&aacute;rm&aacute;n plate theory is used to generate nonlinear governing equations, 2) the method of minimum total potential energy combined with the Ritz methodology converts the governing equations into a system of nonlinear and coupled algebraic equations, 3) and Groebner Basis is employed to decouple the algebraic equations to find analytic solutions in terms of the material and geometric parameters of the plate. Maple 13 is used to compute the Groebner basis. Some examples of Maple worksheets and ANSYS log files for the current study are documented in the thesis. </p><p> The results of the present analysis indicate that nonlinear effects for the plates subjected to larger deformation are significant for predicting the deflections and stresses in the plates and necessary compared to those based on the linear assumptions. The analysis presented in the thesis further shows the potential of the Groebner basis methodology combined with the methods of Ritz, Galerkin, and similar approximation methods of weighted residuals which may provide a useful procedure of analysis to other nonlinear problems and a basis of preliminary design in engineering practice.</p>
4

Thin film flows in curved tubes

Chutsagulprom, Nawinda January 2010 (has links)
The main motivation of this thesis comes from a desire to understand the behaviours of blood flow in the vicinity of atheroma. The initiation and development of atherosclerosis in arteries are normally observed in the areas of low or oscillating wall shear stress, such as on the outer wall of a bifurcation and the inside of the bends. We start by building on the background to the areas related to our models. We focus on the models of fluid flow travelling through a curved tube of uniform curvature because most arteries are tapered and curved. The flow of an incompressible Newtonian fluid in a curved tube is modelled. The derivation of the corresponding equations of the motion is presented. The equations are then solved for a steady and oscillatory driving axial pressure gradient. In each case, the flow is governed by different dimensionless parameters. The problem is solved for a variety of parameter regimes by using asymptotic technique as well as numerical method. Some aspects of thin-film flows are studied. The well-known thin film equation is derived using lubrication theory. The stability of a thin film in a straight tube and the effects of a surfactant droplet on a liquid film are presented. The moving contact line problem, one of the controversial topics in fluid dynamics, is also discussed. The leading-order equations governing thin-film flow over a stationary curved substrate is derived. Various approaches and the application of flow on particular substrates are shown. Finally, we model two-layer viscous fluids using lubrication approximation. By assuming the thickness of a lower liquid layer is much thinner than that of the upper liquid layer, the equation governing the liquid-liquid interface is derived. The steady-state and trasient solutions of the evolution equation is computed both analytically and computationally.
5

Explicit alternating direction methods for problems in fluid dynamics

Al-Wali, Azzam Ahmad January 1994 (has links)
Recently an iterative method was formulated employing a new splitting strategy for the solution of tridiagonal systems of difference equations. The method was successful in solving the systems of equations arising from one dimensional initial boundary value problems, and a theoretical analysis for proving the convergence of the method for systems whose constituent matrices are positive definite was presented by Evans and Sahimi [22]. The method was known as the Alternating Group Explicit (AGE) method and is referred to as AGE-1D. The explicit nature of the method meant that its implementation on parallel machines can be very promising. The method was also extended to solve systems arising from two and three dimensional initial-boundary value problems, but the AGE-2D and AGE-3D algorithms proved to be too demanding in computational cost which largely reduces the advantages of its parallel nature. In this thesis, further theoretical analyses and experimental studies are pursued to establish the convergence and suitability of the AGE-1D method to a wider class of systems arising from univariate and multivariate differential equations with symmetric and non symmetric difference operators. Also the possibility of a Chebyshev acceleration of the AGE-1D algorithm is considered. For two and three dimensional problems it is proposed to couple the use of the AGE-1D algorithm with an ADI scheme or an ADI iterative method in what is called the Explicit Alternating Direction (EAD) method. It is then shown through experimental results that the EAD method retains the parallel features of the AGE method and moreover leads to savings of up to 83 % in the computational cost for solving some of the model problems. The thesis also includes applications of the AGE-1D algorithm and the EAD method to solve some problems of fluid dynamics such as the linearized Shallow Water equations, and the Navier Stokes' equations for the flow in an idealized one dimensional Planetary Boundary Layer. The thesis terminates with conclusions and suggestions for further work together with a comprehensive bibliography and an appendix containing some selected programs.
6

Deformation and fracture analysis of piezoelectric materials using theoretical, experimental and numerical techniques

Lee, Kwok-lun, 李國綸 January 2002 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
7

Mathematical modelling of surfactant adsorption structures at interfaces

Morgan, Cara Ellen January 2012 (has links)
In this thesis we derive and solve mathematical models for surfactant systems with differing adsorption structures at interfaces. The first part of this thesis considers two dynamic experimental set-ups for which we derive the associated mathematical surfactant–fluid description. Firstly we consider the behaviour of a weakly interacting polymer–surfactant solution under the influence of a steady straining flow. We reduce the model using asymptotic methods to predict the regimes under which we observe phase transitions of the species in the system and show how the bulk dynamics couple to the surfactant adsorption. Secondly we model an experiment to observe the desorption kinetics of a surfactant monolayer, designed to emulate the 'rinse mechanism' used for the removal of surfactant-containing products using water. Through the comparison of our model with experimental data we derive a semi-empirical relationship that describes the variation in depth of a near-surface diffusive boundary layer with the reduced Peclet number. We then employ a combination of asymptotic and numerical techniques that validate this result. The second part of this thesis is concerned with surfactant systems that exhibit more pronounced adsorption at the interface due to the surfactant monomers no longer arranging themselves in a single layer, as is typically the case, but rather in multiple layers. Such self-assembled structures are commonly referred to as multilayers. We derive a simplified model that describes the rearrangement of surfactant within the multilayer structure and draw comparisons between the features of our model and experimental observations. We consider an extension of the theory to the situation of multilayer formation between two adsorbing interfaces, which is governed by an implicit free-boundary problem. We also consider incorporation of bulk solution effects, such as the addition of an electrolyte. Finally, we draw our conclusions and suggest further theoretical and experimental work related to the models presented in this thesis.
8

Extended finite element method schemes for structural topology optimization.

January 2012 (has links)
水準集結構拓撲優化方法同傳統的基於材料的拓撲優化方法相比具有明顯的優勢。由於採用了隱式的邊界表達,水準集方法能方便地處理結構形狀和拓撲的變化,且在優化過程中可以保持邊界的光滑。但這種動態結構邊界需要一種有限元分析方法可以適應其動態變化且能夠獲得足夠的計算精度。本文對傳統水準集結構拓撲優化中有限元分析存在的關鍵問題進行研究,同時針對應力約束下的結構拓撲優化,提出了一種新的拓撲優化方法。 / 首先, 擴展有限元法作為一種相對精確和高效的結構分析方法,本文將其引入到水準集結構拓撲優化中。引入擴展有限元法主要是為了處理優化過程中結構邊界上出現的材料的高度不連續情況,從而避免耗時的網格重新劃分。如果結構邊界從有限元單元內部通過,為了獲得足夠的計算精度,該單元內需要採用特殊的數值積分方法。常用的方法是將這個單元內被材料填充的區域劃分成小的子單元去適應單元內部的邊界,然後在各個子單元內採用高斯數值積分來獲得該單元的剛度矩陣。對於二維問題,如果結構邊界從一個單元內部通過,將單元分成幾部分,首先把單元內部的實體區域劃分成子三角形,然後計算出每個子三角形內的高斯積分點,最後單元剛度矩陣通過把所有子三角形的高斯積分點處的數值積分迭加得到。對於三維問題,則是將一個六面體單元分解為幾個四面體,然後在每一個四面體內部通過結構上定義的水準集函數值得到邊界,對於實體的部分劃分為子四面體,在每一個子四面體內計算出高斯積分點,此四面體的單元剛度矩陣為所有子四面體剛度矩陣的迭加,因此,該六面體的單元剛度矩陣為所劃分的四面體單元剛度矩陣的迭加。 / 其次,本文研究了提高擴展有限元法的計算精度和效率的方法。採用擴展有限元法進行結構分析時,如果被結構邊界剖分的有限元單元中實體部分體積比小到一定程度,將會影響到計算精度,本論文給出了處理擴展有限元中這種小單元情形的具體辦法。擴展有限元法作為一種結構分析計算方法,除了必須考慮精度外,效率也是一個重要的指標,尤其對於拓撲優化問題,因拓撲優化問題通常需要多步的反覆運算來獲取最優或局部最優解。為提高擴展有限元法的計算效率,相對於前面的基於剖分單元為子單元進行積分的辦法,本文提出了一種更高效的積分方法,即去除積分單元剖分,通過直接積分來計算被結構邊界剖分的單元的剛度矩陣。這種直接積分的方法不僅能保證結構分析的精度,更能顯著的提高計算效率,這對於水準集結構拓撲優化是非常有意義的。同時高階單元被用來從另一個角度分析擴展有限元法計算精度與效率之間的關係,換言之,可以用高階單元在相對粗的網格上來獲取同低階單元在相對密的網格上相同的分析結果精度,從而提高計算效率。但是這個問題需要找出計算精度在網格密度和單元階次之間的關係。 / 第三,本文以二維和三維結構的柔度最小化問題為例驗證了上述擴展有限元演算法在結構拓撲優化問題中應用的有效性。 / 最後,本文研究了基於應力約束的結構拓撲優化問題,並採用前面提出的擴展有限元法與水準集結合的拓撲優化方法。由於採用擴展有限元法進行結構分析可以獲得較準確的應力計算結果,特別是在結構邊界附近,這對於基於應力的拓撲優化問題有很大的優勢。而且,本文提出了一種形狀等效約束法來有效地控制局部應力約束,數值算例也證明擴展有限元法與形狀等效約束方法相結合對處理應力約束問題是一種非常有效的。同時,本文還提出了一種全新的通過拓撲優化來實現應力隔離結構設計的方法。通過在拓撲優化問題中不同區域施加不同的應力約束來有效地模擬這種應力隔離的問題。最終數值算例證明,該方法可以通過改變力的傳播途徑來達到有效地形成結構的應力隔離。 / Level set method is an elegant approach for structural shape and topology optimization, compared to the conventional material based topology optimization methods. The structural boundary is implicitly represented by a moving level set function. Thus, the shape and topology optimization can be processed simultaneously while maintaining a smooth boundary. The moving structural boundary demands a finite element analysis adaptable to the dynamic boundary changes and meeting required accuracy. In this thesis, the key issues of finite element methods of structural analysis for level set optimization method are investigated and an approach to stress-constrained topology optimization is presented. / Firstly, the extended finite element method (XFEM) is introduced into the level set method structural shape and topology optimization for obtaining a considerably accurate and efficient result of finite element analysis. In fact, the XFEM is employed as a structural analysis method to solve the problems of strong discontinuities between material and void domain during the level set optimization process in order to avoid the time cost remeshing. To achieve a reasonably accurate result of finite element analysis in the element intersected by structural boundary, special numerical integral schemes of XFEM are studied. The partition method is adopted to divide the integral domain into sub-cells, in which Gauss quadrature is utilized to calculate the element stiffness matrix. For two-dimensional (2D) problems, the integral domain is divided into sub-triangles, and the Gauss quadrature points in each sub-triangle are used to evaluate the element stiffness matrix which is the sum of all contributions of these sub-triangles. For three-dimensional (3D) problems, the hexahedral element is decomposed into multiple tetrahedra, and the integral domain in each tetrahedron is divided into sub-tetrahedra for obtaining the Gauss quadrature points. Therefore, the stiffness of each tetrahedron is obtained by summing all contributions of the sub-tetrahedra, which means the hexahedral element stiffness matrix is the accumulation of element stiffness matrixes with all these tetrahedra. / Secondly, the methods for improving the computational accuracy and efficiency of XFEM are studied. First of all, the practical solutions for dealing with the small volume fraction element of the proposed XFEM are provided since this kind of situation may result in the accuracy losing of finite element analysis. Besides computational accuracy of structural analysis, the efficiency is another sufficiently important issue of structural optimization problem. Therefore, a new XFEM integral scheme without quadrature sub-cells is developed for improving the computational efficiency of XFEM compared to the XFEM integral scheme with partition method, which can yield similar accuracy of structural analysis while prominently reducing the computational cost. Numerical experiments indicate that this performance is excellent for level set method shape and topology optimization. Moreover, XFEM with higher order elements are involved to improve the accuracy of structural analysis compared to the corresponding lower order element. Consequently, the computational cost is increased, therefore, the balance of computational cost between FE system scale and the order of element is discussed in this thesis. / Thirdly, the reliability and advantages of the proposed XFEM schemes are illustrated with several 2D and 3D mean compliance minimization examples that are widely employed in the recent literature of structural topology optimization. / Finally, the stress-based topology optimization problems with the proposed XFEM schemes are investigated. Due to the accuracy of structural analysis, XFEM schemes have natural advantages for solving the stress-based topology optimization problems using the level set method. Moreover, the shape equilibrium constraint approach is developed to effectively control the local stress constraint. Some numerical examples are solved to prove the high-performance of the proposed shape equilibrium constraint approach and XFEM schemes in the stress-constrained topology optimization problem. Meanwhile, a new approach of stress isolation design is presented through topology optimization. The stress isolation problem is modeled into a topology optimization problem with multiple stress constraints in different regions. Numerical experiments demonstrate that this approach can change the force transmission paths to successfully realize stress isolation in the structure. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Li, Li. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 113-123). / Abstract also in Chinese. / Abstract --- p.I / 摘要 --- p.IV / Acknowledgement --- p.VI / Contents --- p.VII / List of Figures --- p.XI / List of Tables --- p.XV / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Related Works --- p.3 / Chapter 1.3 --- XFEM for Structural Optimization --- p.4 / Chapter 1.4 --- Topology Optimization with Stress Constraint --- p.7 / Chapter 1.5 --- Contributions and Organization of the Dissertation --- p.10 / Chapter 2 --- Level Set Method for Structural Optimization --- p.12 / Chapter 2.1 --- Structural Optimization Problem --- p.12 / Chapter 2.2 --- Implicit Level Set Representation --- p.14 / Chapter 2.3 --- Evolution of the Level Set Function --- p.15 / Chapter 2.4 --- Level Set Surface Reinitialization --- p.16 / Chapter 2.5 --- Velocity Extension --- p.17 / Chapter 3 --- Extended Finite Element Method (XFEM) --- p.19 / Chapter 3.1 --- Global Enrichment --- p.19 / Chapter 3.2 --- Local Enrichment --- p.20 / Chapter 3.3 --- Enrichment Function --- p.22 / Chapter 3.3.1 --- Enrichment for Strong Discontinuity --- p.22 / Chapter 3.3.2 --- Enrichment for Weak Discontinuity --- p.23 / Chapter 3.4 --- XFEM used in Structural Optimization --- p.23 / Chapter 4 --- Implementation of XFEM for Structural Optimization --- p.25 / Chapter 4.1 --- 2D XFEM Scheme --- p.26 / Chapter 4.1.1 --- Numerical Integral Scheme in 2D --- p.26 / Chapter 4.1.2 --- Evaluation of the 2D XFEM Scheme --- p.27 / Chapter 4.2 --- 3D XFEM Scheme --- p.30 / Chapter 4.2.1 --- Numerical Integral Scheme in 3D --- p.30 / Chapter 4.2.2 --- Evaluation of the 3D XFEM Scheme --- p.33 / Chapter 5 --- Computational Accuracy and Efficiency Aspects of XFEM --- p.36 / Chapter 5.1 --- XFEM Scheme for Small Volume Fraction Element --- p.38 / Chapter 5.1.1 --- Problem Definition --- p.39 / Chapter 5.1.2 --- Numerical Example --- p.41 / Chapter 5.2 --- Stress Smoothing in XFEM --- p.46 / Chapter 5.3 --- XFEM Integral Scheme without Quadrature Sub-cells --- p.50 / Chapter 5.3.1 --- 2D XFEM Integral Scheme without Quadrature Sub-cells --- p.50 / Chapter 5.3.2 --- 3D XFEM Integral Scheme without Quadrature Sub-cells --- p.53 / Chapter 5.4 --- Higher Order Elements with XFEM Scheme --- p.55 / Chapter 5.4.1 --- Higher Order Elements --- p.55 / Chapter 5.4.2 --- Numerical Example --- p.57 / Chapter 6 --- Minimum Compliance Optimization using XFEM --- p.64 / Chapter 6.1 --- Level Set Formulation of the Optimization Problem --- p.64 / Chapter 6.2 --- Finite Element Analysis with XFEM --- p.65 / Chapter 6.3 --- Shape Sensitivity Analysis --- p.65 / Chapter 6.4 --- Numerical Examples --- p.68 / Chapter 6.4.1 --- A 2D Short Cantilever Beam --- p.68 / Chapter 6.4.2 --- A 3D Short Cantilever Beam --- p.75 / Chapter 6.4.3 --- A Michell-type Structure in 3D --- p.77 / Chapter 7 --- Stress-Constrained Topology Optimization using XFEM --- p.81 / Chapter 7.1 --- Shape Equilibrium Approach to Stress Constraint --- p.81 / Chapter 7.1.1 --- Problem Formulation of Stress-Constrained Topology Optimization --- p.81 / Chapter 7.1.2 --- Shape Equilibrium Constraint Approach --- p.82 / Chapter 7.1.3 --- Material Derivatives of Stress Constraint --- p.83 / Chapter 7.1.4 --- Shape Sensitivity Analysis --- p.85 / Chapter 7.2 --- Finite Element Analysis with XFEM --- p.87 / Chapter 7.3 --- Minimal Weight Design with Stress Constraint --- p.88 / Chapter 7.3.1 --- Problem Definition --- p.88 / Chapter 7.3.2 --- Numerical Example --- p.89 / Chapter 7.4 --- Stress Isolation design --- p.94 / Chapter 7.4.1 --- Problem Definition --- p.94 / Chapter 7.4.2 --- Shape Sensitivity Analysis --- p.95 / Chapter 7.4.3 --- Numerical Examples --- p.97 / Chapter 8 --- Conclusions and Future Works --- p.109 / Chapter 8.1 --- Conclusions --- p.109 / Chapter 8.2 --- Future Works --- p.110 / Chapter 8.2.1 --- Adaptive XFEM --- p.111 / Chapter 8.2.2 --- Extend Shape Equilibrium Constraint Approach to 3D --- p.112 / Chapter 8.2.3 --- Extend the Stress Isolation Design Method into Industrial Applications --- p.112 / Bibliography --- p.113
9

Some crack problems in linear elasticity / by W.T. Ang

Ang, W. T. (Whye Teong) January 1987 (has links)
Errata inserted / Bibliography: leaves 170-175 / iii, 175 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, 1987
10

A computational procedure for analysis of fractures in three dimensional anisotropic media

Rungamornrat, Jaroon 28 August 2008 (has links)
Not available / text

Page generated in 0.0737 seconds