• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 26
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 18
  • 18
  • 17
  • 15
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Specialized Replication Operons Control Rhizobial Plasmid Copy Number in Developing Symbiotic Cells

Perry, Clarice Lorraine 01 December 2015 (has links)
The rhizobium – legume symbiosis is a complex process that involves genetic cooperation from both bacteria and plants. Previously, our lab described naturally occurring accessory plasmids in rhizobia that inhibit this cooperation. A transposon mutagenesis was performed on the plasmids to detect the genetic factor that blocked nitrogen fixation. Several of the plasmids were found to possess a replication operon that when disrupted by transposon insertion, restored symbiotic function. This study describes an in-depth investigation into one of those plasmids, pHRC377, and into its replication operon. The operon, which we have called repA2C2, comes from the repABC family of replication and partitioning systems commonly found in alphaproteobacteria. In this study we show that this operon is not necessary for pHRC377 replication in LB culture or free living cells, but is necessary for plasmid amplification in the plant, specifically during rhizobial differentiation into nitrogen fixing bacteroids. We also show how the other repABC type operons on pHRC377 function in relation to plasmid maintenance and copy number during endoreduplication and how they do not have the same phenotypic effect as repA2C2.
12

The association of homeotic gene expression with stem cell formation and morphogenesis in cultured medicago truncatula

Chen, Shih-kuang January 2009 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Somatic embryogenesis (SE) can be induced in vitro in Medicago truncatula 2HA by auxin and cytokinin but not in wild type Jemalong. Wild-type Jemalong will only form callus in the presence of auxin and cytokinin and both Jemalong and 2HA will form roots in response to auxin alone. The F2 analysis of 2HA X Jemalong crosses suggest that a single gene may open the way to SE but additional genes are required to maximise the process. Auxin and cytokinin are required for 2-3 weeks for SE and for de novo root formation auxin is essential for about one week. Abscisic acid (ABA) and ethylene, both stress related hormones, enhance SE induction but inhibit callus and de novo root formation. The WUSCHEL (WUS) gene was investigated in M. truncatula (Mt) and identified by the similarity with Arabidopsis WUS in amino acid sequence, phylogeny, promoter element patterns, and expression patterns in planta. MtWUS is induced by cytokinin after 24-48 h in embryogenic cultures and maximum expression occurs after 1 week which coincides with totipotent stem cell induction. MtWUS expression, as illustrated by promoter-GUS studies, subsequently localises to the embryo and corresponds to the onset of MtCLV3 expression. RNAi studies show that MtWUS expression is essential for callus and somatic embryo production. There is evidence based on the presence of MtWUS promoter binding sites that MtWUS is required for the induction of MtSERF1 which appears to have a key role in the signalling required for SE induced in 2HA. MtWOX5, as for MtWUS, was identified by similarity to Arabidopsis WOX5 based on amino acid sequence, phylogeny, promoter element patterns, and expression patterns in planta. MtWOX5 expresses in the auxin induced root primordium and root meristem and appears to be involved in pluripotent stem cell induction. GA suppresses the MtWOX5 expression in the root apex and suppresses the root primordium induction, consistent with the importance of MtWOX5 in in vitro root formation. The evidence is discussed that the homeotic genes MtWUS and MtWOX5 are “hijacked for stem cell induction which is key to somatic embryo and de novo root induction. In relation to SE, a key role for WUS in the signalling involved in induction is discussed and a model developed.
13

In-vivo-Lokalisierung von strukturellen und regulatorischen Komponenten von COPI-coated Vesikeln in Medicago truncatula cv. Jemalong-Wurzelzellen

Densow, Holger. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Bielefeld.
14

In vivo dynamics of the quorum sensing-related interplay during symbiotic interaction between the nitrogen fixing bacterium, Sinorhizobium meliloti, and its eukaryotic host, Medicago truncatula

Shakhatreh, Muhamad Ali Khalil 09 February 2012 (has links)
No description available.
15

Aislamiento y caracterización de genes MADS-box en Medicago truncatula: duplicaciones génicas y subfuncionalización en el linaje euAGAMOUS

Serwatowska, Joanna 20 March 2012 (has links)
Las leguminosas son el segundo grupo de plantas en importancia agronómica. Sin embargo, se conoce poco sobre sus procesos de floración, a pesar de la importancia que tienen en los sistemas de producción de las mismas. En el presente trabajo, se utilizó como sistema modelo la leguminosa Medicago truncatula para estudiar la floración en este grupo de plantas. Se pretendía aislar y caracterizar genes de la familia MADS-box en esta especie, los cuales están involucrados en el desarrollo floral y la transducción de señales. Se estudiaron 11 genes MADS-box: dos genes de clase B (MtTM6 y MtNMH7), tres genes de clase C (MtSHP, MtAGa y MtAGb), un gen de clase E (MtSEP) y cinco genes que no forman parte del modelo ABC(DE) (MtAGL6, MtAGL6-like, MtSOC1a, MtSOC1b y MtSOC1-like). Los patrones de expresión de estos genes se analizaron mediante Northern blot e hibridación in situ, observando que todos se expresan en diferentes tejidos florales y/o diferentes estadios de desarrollo floral. Se prestó especial atención a la caracterización funcional de los genes de clase C, debido a su importancia en los procesos reproductivos de las plantas, por lo que se estudiaron los genes MtAGa y MtAGb, homólogos al gen de clase C AGAMOUS. Se analizaron plantas transgénicas con construcciones de RNA interferente y un mutante de pérdida de función C etiquetado por el retrotransposón Tnt1. Además, utilizando la tecnología VIGS se obtuvieron plantas de M. truncatula y de Pisum sativum (leguminosa filogenéticamente cercana) con pérdida de función de los genes MtAGa/MtAGb y PsAGa/PsAGb, respectivamente. También se realizaron experimentos de ganancia de función mediante la expresión constitutiva en el sistema heterólogo Arabidopsis thaliana. Los resultados obtenidos indican que MtAGa y MtAGb son genes de clase C que además de ser funcionalmente redundantes, se han subfuncionalizado, distribuyendo la función C ancestral entre ambos parálogos, de tal manera que MtAGa tiene un papel prioritario en la determinación del meristemo floral, mientras que MtAGb juega un papel clave en la especificación de la identidad de los órganos reproductores florales. / Serwatowska, J. (2012). Aislamiento y caracterización de genes MADS-box en Medicago truncatula: duplicaciones génicas y subfuncionalización en el linaje euAGAMOUS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15077
16

Rôle des rédoxines chez Sinorhizobium meliloti à l’état libre et lors de son interaction symbiotique avec Medicago truncatula. / Role of Sinorhizobium meliloti redoxins in free living conditions and during symbiosis with Medicago truncatula

Benyamina, Sofiane 29 March 2012 (has links)
Sinorhizobium meliloti est une bactérie du sol Gram- capable d'induire la formation denodosités fixatrices d'azote lors d'une interaction symbiotique avec les plantes de la familledes légumineuses. L'importance de la balance redox au cours de cette interaction a été miseen évidence. Ainsi, des mutants bactériens déficients dans la production du glutathion (GSH),présentent un phénotype altéré d'infection et de fixation de l'azote atmosphérique.Le premier objectif a donc été de déterminer si les phénotypes observés chez les mutants de lavoie de biosynthèse du GSH étaient liés à l'activité des glutarédoxines (GRX). Une analysebioinformatique a révélé la présence de trois gènes codant des GRX chez S. meliloti. Lesmutants, Smgrx1, Smgrx2 et Smgrx3, déficients pour chacune des GRX, ne produisent pasdes phénotypes similaires à ceux observés avec les mutants GSH. Si Smgrx2 présente unphénotype moins marqué, Smgrx1 est plus sévèrement affecté puisqu'il n'est plus capable dese différencier en bactéroïde. L'implication de SmGrx2 dans la régulation du métabolisme dufer et la mise en place des centres Fe-S a, par ailleurs, été mise en évidence.Le second objectif a été de définir s'il existait, chez S. meliloti, une redondance fonctionnelleentre les GRX et les thiorédoxines (TRX). Ainsi, le mutant SmtrxB, dépourvu de thiorédoxineréductase, présente la particularité d'induire la formation d'un plus grand nombre de nodulesque la souche sauvage. Le système TRX de S. meliloti apparaît donc comme un régulateurnégatif de la nodulation. D'autre part, les nodosités formées par ce mutant SmtrxB, ont uneactivité fixatrice d'azote significativement diminuée. Les rôles des TRX et des GRXapparaissent donc, au moins partiellement, distincts.Les résultats obtenus ici apportent des éléments nouveaux sur l'implication du GSH, des GRXet des TRX dans la mise en place d'une nodosité fonctionnelle, et ouvrent de nouvellesperspectives d'études sur les rôles de ces molécules dans le processus de fixation d'azote. / Sinorhizobium meliloti is a soil bacterium Gram- able to induce the formation of nitrogenfixingnodules during a symbiotic interaction with plants of the legume family. Theimportance of redox balance during this interaction has been demonstrated. In this way,bacterial mutants deficient in the production of glutathione (GSH), exhibit an alteredphenotype of infection and fixation of atmospheric nitrogen.The first objective was therefore to determine whether the phenotypes observed in mutants ofthe GSH biosynthesis pathway were related to the activity of glutaredoxins (GRX). Abioinformatic analysis revealed the presence of three genes encoding GRX in S. meliloti. Themutants, Smgrx1, Smgrx2 and Smgrx3, deficient for each of the GRX, do not producephenotypes similar to those observed with the GSH mutants. If Smgrx2 presents a less severephenotype, Smgrx1 is more severely affected since it is incapable of differentiating intobacteroïd. The involvement of SmGrx2 in the regulation of iron metabolism and theestablishment of Fe-S cluster has also been demonstrated.The second objective was to determine if there was, in S. meliloti, a functional redundancybetween GRX and thioredoxin (TRX). Thus, the SmtrxB mutant, devoid of thioredoxinreductase, has the distinctive feature of inducing the formation of more nodules than the wildtype strain. The TRX system of S. meliloti appears to be a negative regulator of nodulation.On the other hand, the nodules formed by this SmtrxB mutant have a significantly decreasednitrogen-fixing activity. Hence, the roles of TRX and GRX appear to be at least partiallydistinct.The results obtained here provide new evidence on the involvement of GSH, the GRX andTRX in the establishment of a functional nodule, and open new perspectives for studying onthe roles of these molecules in the process of nitrogen fixation.
17

Etude de protéines de Sinorhizobium meliloti impliquées dans le contrôle du niveau de NO : modulation de la sénescence des nodules de Medicago truncatula / Study of sinorhizobium meliloti proteins involved in the control of NO level : modulation of the module senescence of Medicago truncatula

Blanquet, Pauline 16 October 2015 (has links)
Le monoxyde d'azote (NO) est une molécule gazeuse impliquée dans de nombreux processus biologiques chez les plantes, de la germination de la graine à la mise en place de réponses à des stress abiotiques et biotiques. Dans les interactions plante/ pathogène, le NO fait partie de l'arsenal de défenses de l'hôte. En réponse, les pathogènes ont développé des mécanismes pour contrer les effets du NO. Dans la symbiose fixatrice d'azote entre la légumineuse modèle Medicago truncatula et la bactérie Sinorhizobium meliloti, du NO a été détecté durant toutes les phases de l'interaction. L'équipe avait précédemment montré que la réponse de S. meliloti au NO est nécessaire au maintien de la symbiose puisque des nodules formés par une souche mutée dans le gène hmp (le gène hmp est induit par le NO et code pour une protéine qui dégrade le NO) sénescent prématurément. Au cours de cette thèse, nous avons étudié 3 nouveaux gènes de S. meliloti induits par le NO : nnrS1, nnrS2 et norB. nnrS1 et nnrS2 codent pour deux protéines de fonction inconnue et norB code pour une NO réductase qui dégrade le NO. Nous avons montré que ces 3 protéines participent d'une part à la résistance des bactéries au NO en culture et d'autre part, au maintien de l'interaction symbiotique. Par ailleurs, nous avons montré que ces 3 protéines sont impliquées directement ou indirectement dans la dégradation du NO et des résultats préliminaires suggèrent que NnrS1 présente une activité NO réductase. De plus, nous avons montré que NnrS1 et Hmp n'agissent pas seulement sur les bactéries mais aussi sur les protéines végétales. Il était connu que dans les nodules de M. truncatula, la glutamine synthétase (GS) végétale, une enzyme clé de la symbiose, est inhibée par tyrosine nitration, une modification post-traductionnelle dépendante du NO. Nous avons montré que NnrS1 et Hmp, en modulant le niveau de NO dans les nodules, contrôlent l'activité de la GS. Enfin des expériences préliminaires montrent que d'autres protéines (bactériennes et/ou végétales) pourraient être tyrosine nitratées. / Nitric oxide (NO) is a gaseous molecule involved in a large range of biological processes in plants from the seed germination to abiotic and biotic stress responses. In plant-pathogen interactions, NO is part of the defense systems. In response, pathogens have developed mechanisms in order to counteract the NO effects. In the nitrogen fixing symbiosis between the model leguminous plant Medicago truncatula and the bacterium Sinorhizobium meliloti, NO has been detected at all stages of the symbiosis. The team had previously shown that the S. meliloti response to NO is necessary to maintain the symbiotic interaction since nodules elicited by a strain mutated in the hmp gene (hmp is induced by NO and codes for a flavohemoglobine that degrades NO) senesce prematurely. During this thesis, we have studied 3 new genes of S. meliloti whose expression is induced by NO: nnrS1, nnrS2 and norB. nnrS1 and nnrS2 encode two proteins of unknown function and norB codes for a NO reductase which degrades NO. We have shown that these 3 proteins participate on one hand in bacterial NO resistance in culture and on the other hand in maintaining the symbiotic interaction. Furthermore, we have shown that these 3 proteins are involved, directly or indirectly, in NO degradation and preliminary results suggest that NnrS1 displays a NO reductase activity. Moreover, we have shown that NnrS1 and Hmp are not only dedicated to protect bacteria against NO but also play a role on plant proteins. It was already known that, in M. truncatula nodules, the plant glutamine synthétase (GS), a key enzyme of the symbiosis is inhibited by tyrosine nitration, a NO post-translational modification. We have shown that NnrS1 and Hmp, by modulating NO levels in nodules, control the GS activity. Finally, preliminary experiments suggest that other proteins (from bacterial and/or plant origin), could be tyrosine nitrated.
18

Étude fonctionnelle de trois facteurs de transcription intervenant dans la regulation de la qualité germinative des graines chez les légumineuses : ABI4, ABI5 et HSFA9 / Functional study of three transcription factors involved in the regulation of germinal quality of seeds in legumes

Zinsmeister, Julia 22 November 2016 (has links)
La phase de maturation des graines est caractérisée par l’ac-quisition successive de composantes qui constituent la qua-lité physiologique d’un lot de semences, à savoir la toléranceà la dessiccation (capacité à survivre au retrait total de l’eaucellulaire), la longévité (capacité de survivre à l'état sec pen-dant le stockage), la dormance ainsi que la vigueur germina-tive (capacité à germer de façon rapide et homogène quelquessoient les conditions de l’environnement). La production desemences à haute qualité germinative représente un enjeumajeur pour les semenciers car elle constitue un levier clefpour augmenter les rendements agricoles. Cependant, lesmécanismes régulant l’acquisition de la qualité germinativeet en particulier la longévité restent peu connus. Une étudepréalable d’un réseau de co-expression génique de facteursde transcription avait identifi é trois gènes candidats associésà la longévité chez Medicago truncatula :MtABL (ABA INSEN-SITIVE4-LIKE), MtABI5 (ABA INSENSITIVE5) et MtHSFA2.2(HEAT SHOCK FACTOR A2.2). L'objectif de cette thèse était devalider ces gènes et d’en comprendre leur fonction chez Medicagotruncatula et le pois par la caractérisation de mutantsd’insertion et EMS. ABL et ABI5 jouent un rôle dans la matu-ration en régulant positivement la longévité alors que celle-ci n’est pas affectée dans les mutants hsfa2.2. Des étudestranscriptomiques et biochimiques montrent que ABL et ABI5régulent de manière complexe la photosynthèse, la dégrada-tion de la chlorophylle et l’accumulation des oligosaccharide / Seed maturation is characterized by the acquisition ofthe various components that collectively constitute thephysiological quality or vigor of the seed: desiccation tolerance(DT, i.e. the capacity to survive complete drying), seedstorability or longevity (the capacity to remain alive duringstorage), dormancy, as well as fast and uniform germinationand seedling emergence under stressful conditions. Thesetraits are pivotal to ensure rapid and homogenous seedlingestablishment required for stable yield and are a majoreconomic challenge for the seed industry. Despite theiragronomic importance, the mechanisms regulating theiracquisition, including longevity, are still poorly understood. InMedicago truncatula, a gene co-expression network inferredthat transcription factors such asMtABL (ABA INSENSITIVE4-LIKE), MtABI5 (ABA INSENSITIVE5) and MtHSFA2.2 (HEATSHOCK FACTOR A2.2) are putative regulators of seedlongevity. The aim of this thesis was to characterize theirroles in Medicago truncatula and Pisum sativum using Tnt1insertion and EMS mutants. ABL and ABI5 are positiveregulators of longevity while defects in hsfa2.2 do not affectit. Transcriptomic and biochemical analyses show that ABLand ABI5 are involved in the regulation of photosynthesisassociated genes, chlorophyll loss and accumulation ofraffi nose family oligosaccharides (RFO). ABI5 is also involvedin the accumulation of stress proteins such as LEA proteins.By establishing a link between degreening, RFO contents andlongevity, our work offers new opportunities to tackle a
19

Importance de l'ADN déméthylase DEMETER lors du développement nodulaire au cours de la symbiose Medicago truncatula/Sinorhizobium meliloti / Importance of the DNA demethylase DEMETER for nodule development during the symbiosis Medicago truncatula/Sinorhizobium meliloti

Satgé, Carine 04 November 2016 (has links)
La symbiose légumineuse/rhizobium résulte en la formation d’un nouvel organe racinaire, le nodule, au sein duquel une induction coordonnée et massive de milliers de gènes a lieu. Plusieurs gènes contrôlant la méthylation de l’ADN sont régulés de façon spatiale au sein des nodules de Medicago truncatula, dont notamment un gène codant pour une déméthylase, DEMETER (DME), fortement exprimé dans la zone de différenciation. Ici, nous montrons que MtDME est essentiel pour le développement du nodule et qu’il régule l’expression de 1425 gènes, dont certains essentiels pour la différenciation des cellules de plantes et des bactéries. Une approche de séquençage bisulfite couplée à une capture génomique nous a permis d’identifier 474 régions qui sont différentiellement méthylées au cours du développement nodulaire, comportant notamment des gènes codant pour des peptides NCRs (Nodule-specific Cysteine-Rich). La diminution de l’expression de MtDME par ARN interférant mène à l’hyperméthylation et à la down-régulation de 400 gènes, la plupart d’entre eux étant associés à la différenciation du nodule. Une reprogrammation massive de l’expression génique via la déméthylation de l’ADN représente donc un nouveau mécanisme épigénétique qui contrôle une étape clé de l’organogenèse des nodules indéterminés durant l’interaction symbiotique. / The legume-Rhizobium symbiosis leads to the formation a new organ, the root nodule, involving coordinated and massive induction of specific genes. Several genes controlling DNA methylation are spatially regulated within the Medicago truncatula nodule, with notably a demethylase gene, DEMETER (DME), mostly expressed in the differentiation zone. Here, we show that MtDME is essential for nodule development and regulates the expression of 1425 genes, certain critical for plant and bacterial cell differentiation. Bisulphite sequencing coupled to genomic capture enabled the identification of 474 regions that are differentially methylated during nodule development, including notably Nodule-specific Cysteine-Rich peptide genes. Decreasing DME expression by RNA interference led to hypermethylation and concomitant downregulation of 400 genes, most of them associated with nodule differentiation. Massive reprogramming of gene expression through DNA de-methylation is a new epigenetic mechanism controlling a key stage of indeterminate nodule organogenesis during symbiotic interactions.
20

Genetic control and biodiversity of tolerance to Verticillium albo-atrum and Verticillium dahliae in Medicago truncatula / Contrôle génétique et biodiversité de la tolérance à Verticillium albo-atrum chez Medicago

Negahi, Azam 06 October 2013 (has links)
La verticilliose est une maladie vasculaire des plantes dont les symptômes typiques sont un flétrissement des parties aériennes, des feuilles chlorosées puis séchées, et dans les cas de maladie grave la mort de la plante. Au niveau des racines on observe une coloration brune du tissu conducteur. Cette maladie est causée par un champignon du sol du genre Verticillium. Les espèces majeures V. dahliae et V. albo-atrum sont responsables de pertes importantes de rendement sur de nombreuses cultures. Le champignon entre dans la racine par des blessures ou par des fissures au niveau de sites d’émergence de racines latérales, puis il avance vers le cylindre central et envahit les vaisseaux du xylème. Sa croissance reste pendant longtemps limitée aux vaisseaux qu’il colonise en avançant vers les parties aériennes de la plante. Aux stades tardifs, le champignon sort du cylindre central et colonise les autres tissus. En Europe, V. albo-atrum constitue l’une des principales causes de maladies chez la luzerne pérenne et est à l’origine de pertes économiques très importantes. La capacité de V. albo-atrum de survivre dans le sol ainsi que sa localisation protégée dans le cylindre centrale des plantes infectées en font un pathogène difficile à combattre, la lutte génétique par sélection de variétés tolérantes apparaissant comme une approche prometteuse. Cependant, la capacité des microorganismes pathogènes de s’adapter rapidement à des nouvelles plantes hôtes est une menace bien connue de la durabilité des variétés résistantes. Au laboratoire, des travaux ultérieurs ont établi que la plante modèle des légumineuses Medicago truncatula, une espèce sauvage proche de la luzerne cultivée, peut être utilisée pour étudier les mécanismes de résistance et sensibilité vis-à-vis de V. alboatrum. Une lignée résistant et une lignée sensible ont été identifiées et l’étude de la descendance d’un croisement entre ces deux lignées a permis d’identifier un locus majeur (Quantitative trait locus, QTL) contrôlant la résistance à une souche de V. albo-atrum isolée de la Luzerne (Ben et al., 2013 ; Negahi en 6e co-auteur). Ce travail a également montré qu’il existait une grande biodiversité au sein de l’espèce M. truncatula par rapport à la réponse à cette souche de V. albo-atrum. / Verticillium wilt, caused by Verticillium albo-atrum (Vaa) and Verticillium dahliae (Vd), is responsible for yield losses in many economically important crops. The capacity of pathogenic fungi to adapt to new hosts is a well-known threat to the durability of resistant crop varieties. Medicago truncatula is a good model for studying resistance and susceptibility to Verticillium wilt in legume plants. Phenotyping a population of inbred lines from a cross between resistant parent line A17 and susceptible parent F83005.5 contributed to the identification of a first QTL controlling resistance to an alfalfa strain of Vaa in M. truncatula. Then, 25 M. truncatula genotypes from a core collection and six Vaa and Vd strains were used to study the potential of non-host Verticillium strains isolated from different plant species to infect this legume plant, and the plant’s susceptibility to the pathogens. The experiment was arranged as factorial based on a randomized complete block design with three replications. The wilt symptoms caused by Vaa and Vd were scored on a disease index scale from 0 to 4, during 30 days after inoculation of ten day-old plantlets. Disease severity was quantified by the parameters Maximum Symptom Scores (MSS) and Areas Under the Disease Progress Curves (AUDPC). Highly significant differences were observed among plant genotypes and fungal strains, and their interaction was also significant. The correlation between MSS and AUDPC was 0.86 and highly significant. The most severe symptoms were caused by the alfalfa strain Vaa-V31-2 and the least severe by Vd-JR2, as shown by mean values obtained on the 25 genotypes. M. truncatula genotype TN8.3 was identified as the most susceptible genotype by mean values obtained with the 6 fungal strains, whereas F11013-3, F83005.9 and DZA45.6 were highly resistant to all strains studied. The results were used to choose parents for studying the genetics of resistance in M. truncatula to a nonalfalfa Verticillium strain. So, in the second part of this work, genotype A17 which was susceptible and genotype F83005.5 which was resistant to the potato strain Vaa-LPP0323 and recombinant inbred lines (RILs) from a cross between these genotypes were selected in order to study the genetic control of resistance to this strain of the pathogen. Our experimental design was a randomized complete blocks with 116 RILs and three replications. High genetic variability and transgressive segregation for resistance to Vaa-LPP0323 were observed among RILs. A total of four QTLs controlling resistance to Vaa-LPP0323 were detected for the parameters MSS and AUDPC. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 3 to 21%. A negative sign of additive gene effects showed that favourable alleles for resistance come from the resistant parent.

Page generated in 0.0861 seconds