• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geopolymery na bázi elektrárenských popílků a cihelného střepu / Geopolymers based on fly ashes and brick body

Řezník, Bohuslav January 2014 (has links)
In line with the current focus on utilizing side products of various production processes, this dissertation thesis analyzes the process of alkali activation of particular side products: fly ash and brick fragments. This activation produces geopolymeric materials widely used in civil engineering. The thesis aims to optimize the geopolymerization process so that the resulting geopolymer is both ecologically and economically viable. To that end, the thesis studies the course of geopolymeric reaction between the alkali activator and fly ash from: (i) the Chvaletice power plant, (ii) the Dětmarovice power plant, and (iii) biomass combustion, as well as (iv) fluid fly ash from the Hodonín power plant. All experiments of geopolymeric reaction have focused on the factors influencing the synthesis of geopolymers—that is: composition of the alkali activator, the ratio of alumino-silicate to the activator, and the impact of temperature on structure of the synthesized geopolymer. Further, the thesis analyzed the synthesized polymer’s microstructure, phase composition, resistance against corrosive conditions, and compressive strength, as well as mechanical-fracture properties of selected fly-ash geopolymers. The thesis finds that the most suitable for geopolymeric synthesis appears to be the fly ash from the Chvaletice power plant in which case the obtained geopolymers showed best properties in the studied areas. The fly ash from the Dětmarovice power plant, biomass fly ash, and fluid fly ash have failed to reach acceptable properties. Separately, the thesis studies the geopolymerization of brick body that could be suitable input for alkali activation. The geopolymers synthesized from brick fragments resulted in materials of supperior mechanical strength. A mixed use of fly ash and brick fragments failed to show a synergetic effect. Properties of the resulting geopolymers have been inferior to the properties of geopolymers produced using just fly ash or just brick body.

Page generated in 0.0529 seconds