• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study Of Covalent And Non-Covalent Interactions In Ternary Systems Involving: Metal/DNA-RNA/Protein, Where Metal = Platinum(II), Palladium(II)

Atilio, Anzellotti I. 01 January 2007 (has links)
Ternary systems comprising DNA/RNA, proteins and one (or more) metal ion are generating increased interest due to its biological relevance. The knowledge gained from the study of these systems could provide important clues regarding the precise mechanism for transcription factors, repair proteins and metal complexes with anti-tumoral/anti-viral activities.The interactions occurring among the components of these ternary systems can be broadly grouped into covalent and non-covalent. The first kind of interactions can lead to the irreversible transformation of the components in the system, while the second is thought to be reversible leading to transient states and fluxionality. Both kinds of interaction are generally present in living systems, complementing the function of each other.Monofunetional Platinum-nucleobase complexes (MPNs) are synthesized via substitution of a chloride ligand by a nucleobase in platinum complexes with trans geometry. MPNs are particularly interesting for the study of ternary systems since they mimic the first step in the formation of a platinum-DNA adduct and their interaction with aminoacids/proteins provide a good first approach for more complex systems.The presence of the nucleobase as a ligand, significantly modifies the biological activity of these complexes by reducing its cytotoxicity and generating a promising anti-viral activity, especially against HIV-1 virus. The specific role of the nucleobase ligand on these complexes as a non-covalent motif, important for protein recognition, was explored in models involving tryptophan/N-acetyl tryptophan and a small protein domain called zinc finger, containing also a tryptophan residue.The coordination of the nucleobase to a metal ion such as Pt(II) or Pd(II) was found to increase its π-stacking interaction towards aromatic residues in proteins, specifically tryptophan. The enhancing effect was found to depend on the nature of the metal ion, nature of nucleobase and size/complexity of the protein model. Furthermore, DFT studies revealed an important change in the energy for the lowest unoccupied molecular orbital (LUMO) in the coordinated nucleobases, which could place this orbital in an favored position to interact with the highest occupied molecular orbital (HOMO) in the tryptophan residue. Results from calculations showed a good correlation with experimental evidence and could indicate an important role for the frontier molecular orbitals (HOMO/LUMO) of the species involved in the π-stacking interaction.This study was extended to a zinc finger domain from an essential protein in HIV-1 virus, i.e. nucleocapsid protein NCp7. Findings showed that the nucleobase ligand in addition to modulate hydrolysis and reaction rates for MPNs can also be responsible for an initial non-covalent recognition towards a specific protein. This initial recognition has been proposed as the first stage in a two-step mechanism of action for these platinum complexes that ultimately can lead to zinc ejection from the zinc finger domain in the viral NCp7. The significance of the data presented show that is possible to modulate the ligand coordination sphere in metal complexes to can result in great differences in terms of biological effects.The novel chemistry derived from DNA adducts with platinum complexes with a trans geometry was also explored in silico. The molecular dynamics of two free DNA 20-mer is compared with the corresponding metallated-adducts, namely monofunctional, 1,2-bifunctional interstrand and 1,3-bifunctional intrastrand. The differences in terms of structure and energy are compared for these systems, in general the monofunctional adduct exhibited the most interesting feature in terms of structural change in the DNA double strand causing the destacking of the metallated nucleobase. Bifunctional adducts exhibited loss of Watson-crick bonds and localized change in sugar puckering. These results showed that important differences can be found for platinated DNA even at short simulation times < 1 ns.
2

The Effect of Sample and Sample Matrix on DNA Processing: Mechanisms for the Detection and Management of Inhibition in Forensic Samples

Moreno, Lilliana I 23 March 2015 (has links)
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.

Page generated in 0.0503 seconds