• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transition metal carbides as catalysts for methane reforming

Brungs, A. J. A. January 1998 (has links)
No description available.
2

Preparation, Separation, Characterization and Hydrogenation of Endohedral Metallofullerenes

Fu, Wujun 26 January 2010 (has links)
Endohedral metallofullerenes (EMFs) have attracted increasing attention during past decades due to their novel structures and potential applications in a variety of fields such as biomedical applications and molecular electronics. This dissertation addresses the structural characterization and hydrogenation of EMFs. A family of novel large cage yttrium-based TNT EMFs Y₃N@C₂ₙ (n=40-44) was prepared, separated, and structurally characterized for the first time. The structure of Y₃N@C₂ₙ (n=40-44) is proposed by the experimental and computational ¹³C NMR studies. The first ⁸⁹Y NMR results for Y₃N@<I>Iₕ</i>-C₈₀, Y₃N@<I>Cₛ</i>-C₈₄ and Y₃N@<I>D₃</i>-C₈₆ reveal a progression from isotropic to restricted (Y₃N)⁶⁺</sup> cluster motional processes. The di-metallic EMF Y₂C₉₄ is distinguished as a metal-carbide based EMF, Y₂C₂@<I>D₃</i>-C₉₂. The carbide within the cage is successfully detected by ¹³C NMR. The scalar J<sub>Y-C</sub> coupling between the yttrium atoms and the C₂ unit within the C₉₂ cage is successfully observed, suggesting the C₂ unit rotates rapidly around the yttrium atoms. Two paramagnetic endohedral metalloheterofullerenes, Y₂@C₇₉N and Gd₂@C₇₉N, were also synthesized and characterized. The EPR study demonstrated that the spin density is mainly localized between the two metallic ions. A spin-site exchange system could be constructed between Y₂@C₇₉N and the organic donor TMPD. Being a unique paramagnetic material, Gd₂@C₇₉N displays an unusual stability over a wide temperature range, which could be very useful in optical and magnetic areas. Functionalization of EMFs is another point of interest in this dissertation. Hydrogenated Sc₃N@C₈₀ was synthesized and characterized. Our study demonstrated that the Sc₃N@C₈₀ can be fully hydrogenated and the pristine Sc₃N@C₈₀ can be recovered from Sc₃N@C₈₀H₈₀ after being heated in vacuum. The hydrogenated EMFs could be potential hydrogen storage materials. / Ph. D.
3

Sputter Deposited ZrC and NbC Thin Films – Studies on Microstructure, Texture and Hardness

Sathis Kumar, S January 2017 (has links) (PDF)
Transition metal carbides have great industrial importance with a wide area of applications. Unlike many ceramic materials which can be produced from raw materials found in nature, the refractory carbides generally do not exist in the natural state. Synthesis of these carbides is costly and exacting. Sputtered coatings of the refractory metal carbides are of great interest for applications where hard wear-resistant materials are desired. Understanding how the experimental conditions affect the microstructure and properties in reactive sputtering deposition process is still an area of intense research activity. Reactively sputtered zirconium carbide thin films were grown on (100) silicon substrate and the influence of substrate temperature on the properties of the films were investigated. The substrate temperature was varied from ambient to 500°C and partial pressures of the sputter gas and reactive gas (argon and methane) were optimised to obtain crystalline films. Structural characteristics showed that the films exhibit nanocomposite structure consisting of ZrC nanocrystallites embedded in amorphous carbon typically at lower growth temperature (TS < 300°C), and at higher growth temperatures film were highly textured. In addition, Films deposited at 325 °C showed a distinct increase in FWHM which had considerable effect on the mechanical properties of the film. Maximum hardness of 24.8 GPa was seen at 325ºC. The changes in atomic bonding structures, their relative fractions with respect to substrate temperature were discussed. We also report superhard nanocrystalline nanocomposite NbC thin film deposited on Si (100) under 500˚C growth temperature via reactive magnetron sputtering. The pronounced nano hardness and modulus value of 42 GPa and 267 GPa at 40/60 C/Nb ratio were found to be strongly dependent on the grain size and higher percentage of carbide content. HRTEM studies further confirm the formation of nanocomposite structure with nanocrystalline grains embedded in amorphous matrix. The influence of vapour incidence angle (α= 0˚ to 75˚) on optimized ZrC and NbC thin films were investigated by depositing films in Oblique angle deposition geometry (OAD). The anisotropic growth rate of crystallographic planes and the mechanism of development of micro structural features in OAD of carbide films have been investigated. XRD and pole figure measurements indicated that the films grown at higher growth temperatures (800°C) exhibited higher degree of preferred orientation coupled with larger crystallite size whereas the films deposited at room temperature displayed random polycrystalline nature. The strong increase in porosity with increase in deposition angle with distinctly separated nanometer sized columns resulted in lowering of hardness and reduced modulus value. The film with zero incidence angle exhibited a maximum hardness and reduced modulus of 28 GPa and 223 GPa respectively. On the other hand, NbC films deposited with OAD, remained to be polycrystalline in nature with less intense peaks and also exhibited loss of preferential orientation indicating lower crystal quality with increase in vapor deposition angle. It is apparent that variation in crystallographic texture coupled with sculptured nanostructures are solely material dependent properties. Nano metric modulated ZrC/NbC superlattice multilayer structure performance has been evaluated for structural stability and hardness enhancement. Multilayers present superlattice effect in XRD patterns, which are attributed to the precise periodical stacking of crystalline monolayers also confirmed by cross section FESEM. X-ray photoelectron spectroscopy depth profile analysis was performed to get information on chemical composition of modulated layers and also to get an insight on the interface region. Hardness and modulus value of 43.2 GPa and 272 GPa was observed which is higher than individual monolayers response to mechanical loading. The enhanced hardness is possibly due to the inhibition of dislocation motion along the interface and also due to strain effects at the interface.
4

Magnetron Sputtering of Nanocomposite Carbide Coatings for Electrical Contacts

Nygren, Kristian January 2016 (has links)
Today’s electronic society relies on the functionality of electrical contacts. To achieve good contact properties, surface coatings are normally applied. Such coatings should ideally fulfill a combination of different properties, like high electrical conductivity, high corrosion resistance, high wear resistance and low cost. A common coating strategy is to use noble metals since these do not form insulating surface oxides. However, such coatings are expensive, have poor wear resistance and they are often applied by electroplating, which poses environmental and human health hazards. In this thesis, nanocomposite carbide-based coatings were studied and the aim was to evaluate if they could exhibit properties that were suitable for electrical contacts. Coatings in the Cr-C, Cr-C-Ag and Nb-C systems were deposited by magnetron sputtering using research-based equipment as well as industrial-based equipment designed for high-volume production. To achieve the aim, the microstructure and composition of the coatings were characterized, whereas mechanical, tribological, electrical, electrochemical and optical properties were evaluated. A method to optically measure the amount of carbon was developed. In the Cr-C system, a variety of deposition conditions were explored and amorphous carbide/amorphous carbon (a-C) nanocomposite coatings could be obtained at substrate temperatures up to 500 °C. The amount of a-C was highly dependent on the total carbon content. By co-sputtering with Ag, coatings comprising an amorphous carbide/carbon matrix, with embedded Ag nanoclusters, were obtained. Large numbers of Ag nanoparticles were also found on the surfaces. In the Nb-C system, nanocrystalline carbide/a-C coatings could be deposited. It was found that the nanocomposite coatings formed very thin passive films, consisting of both oxide and a-C. The Cr-C coatings exhibited low hardness and low-friction properties. In electrochemical experiments, the Cr-C coatings exhibited high oxidation resistance. For the Cr-C-Ag coatings, the Ag nanoparticles oxidized at much lower potentials than bulk Ag. Overall, electrical contact resistances for optimized samples were close to noble metal references at low contact load. Thus, the studied coatings were found to have properties that make them suitable for electrical contact applications.
5

Yttrium, Gadolinium, and Lutetium Based Endohedral Metallofullerenes: From Synthesis to Application

Zhang, Jianyuan 03 February 2014 (has links)
Endohedral metalofullerenes (EMFs) have emerged as an important class of nanomaterials with vast promise in applications of molecular devices and nanomedicines. This dissertation addresses the EMF research span from synthesis to application, with an emphasis of work on trimetallic nitride template (TNT) EMF and carbide clusterfullerenes (CCFs). As a general introduction, chapter 1 reviews the main literature in TNT EMF studies. Also key works in CCF area are highlighted to show the common feature and uniqueness of this class of EMF in comparison with other EMFs. In the last part of the chapter a list of milestone progress in EMF area has been summarized. Chapter 2 is devoted to the synthetic work on EMFs. Especially, for isotopic modification, the trial and actual EMF syntheses in efforts to introduce 13C, 89Y and 177Lu are described. The next three chapters address the structural characterization of EMFs. Chapter 3 focuses on structural studies of CCFs. With detailed interpretation of 13C NMR and DFT computational results for selected members of the Y2C2@C2n family, the influence of fullerene cage on the size and shape of the yttrium carbide cluster (Y2C2)4+ is investigated. It has also been established that the carbide cluster prefers a linear shape in sufficiently large fullerene cages but adopts a compressed butterfly shape in smaller cages where space is constrained. Chapter 4 presents a systemic examination of dipole moments in TNT EMFs. The first 13C NMR study of M3N@C2(22010)-C78 is achieved on Y3N@C2(22010)-C78. In addition, dipole moments of the M3N@C2n (n=39-44) family are probed by interpretation of chromatographic retention behavior, DFT computational results and single-crystal data. It has been found that TNT EMFs with pentalene motifs exhibit enhanced dipole moments due to the cluster-cage interplay. Chapter 5 provides full characterization of the M2C2@C1(51383)-C84 (M=Y, Gd) molecule, which contains the first example of an asymmetric fullerene cage with fused pentagons. Furthermore, it is suggested that the C1(51383)-C84 cage is capable of a cascade of rearrangements into high symmetry and stable fullerene cages via well-established mechanistic steps, namely, extrusion of C2 units from pentalene or indene motifs and Stone-Wales transformations. As an important intermediate in the formation of high symmetry fullerene cages, the C1(51383)-C84 represents a missing link that implies the "top-down" fullerene formation mechanism. Chapter 6 describes the endeavor to functionalize two exotic EMFs, the room-temperature radical heterometallofullerene Gd2@C79N, and the egg-shaped TNT EMF Gd3N@C84. The reactivity of Gd2@C79N is directly compared to Y2@C79N, Gd3N@C80 and Sc3N@C80 in two reactions and the paramagnetic Gd2@C79N is proven to be very inert toward many known common fullerene cage reactions. Eventually both EMFs have been successfully functionalized via the Bingel reaction, and the derivatives are characterized with HPLC and mass-spectrometry. Chapter 7 compares the effective magnetic moment of Gd3N@C80 and Gd3N@C84, together with the previously reported Gd@C82. The magnetic moment has a second-order contribution to the T1 relaxivity and thereby is an important factor to evaluate an EMF's value in application as MRI contrast agents. Furthermore the influence of cluster motion to magnetic behavior in TNT EMF is discussed. / Ph. D.
6

Metal Oxides, Carbides and Phosphides for Supercapacitor and Electrocatalysis

Hu, Jiajun 29 July 2025 (has links)
Tesis por compendio / [ES] El efecto invernadero, causado por el consumo masivo de combustibles fósiles en los últimos 100 años, ha exacerbado la tendencia del calentamiento global y también ha tenido un impacto severo en la salud humana y el medio ambiente ecológico. Las tecnologías de generación de energía renovable son cruciales para abordar el cambio climático y lograr la sostenibilidad energética, pero estas tecnologías también enfrentan algunos problemas y desafíos comunes, como la intermitencia y la imprevisibilidad, la integración y estabilidad de la red, problemas de almacenamiento de energía, etc. Por lo tanto, investigar dispositivos eficientes de almacenamiento de energía electroquímica y desarrollar tecnologías avanzadas de conversión de energía eléctrica renovable en energía química se vuelve particularmente crucial. El supercondensador es un nuevo tipo de dispositivo de almacenamiento de energía electroquímica que permite el rápido ciclo de descarga y carga. Su mayor densidad de potencia, capacidades de carga y descarga rápidas, amplio rango de temperatura de operación y seguridad permiten aplicaciones generalizadas en fuentes de alimentación de respaldo industriales, vehículos eléctricos, el sector militar y otros campos. Por lo tanto, en la tesis doctoral actual, se han utilizado materiales de óxido de metal y fosfuro de metal como electrodos de supercondensador para el estudio de los mecanismos de almacenamiento de energía y explorar el potencial para aplicaciones prácticas. Por otro lado, convertir la energía eléctrica sostenible en energía química para almacenamiento y utilización también es una forma efectiva, en la que la energía eléctrica se utiliza para impulsar reacciones químicas no espontáneas. La tesis doctoral actual desarrolló un catalizador de fosfuro de metal utilizando un método de síntesis verde y libre de contaminación y lo aplicó a reacciones electrocatalíticas de división de agua. Los resultados experimentales muestran que el material puede operar de manera estable durante mucho tiempo a alta densidad de corriente. Además, la conversión electrocatalítica de nitrato a amoníaco se considera una ruta eficiente para el tratamiento de aguas residuales de nitrato y la producción de combustible de amoníaco rico en hidrógeno. Preparamos con éxito un catalizador de carburo bimetálico utilizando un método sonoquímico, que muestra excelentes propiedades de reducción de nitrato de baja sobretensión y alta eficiencia de rendimiento de amoníaco. / [CA] L'efecte hivernacle, causat pel consum massiu de combustibles fòssils en els últims 100 anys, ha exacerbà la tendència del escalfament global i també ha tingut un impacte sever en la salut humana i el medi ambient ecològic. Les tecnologies de generació d'energia renovable són crucials per a abordar el canvi climàtic i aconseguir la sostenibilitat energètica, però aquestes tecnologies també enfronten alguns problemes i desafiaments comuns, com la intermitència i la imprevisibilitat, la integració i estabilitat de la xarxa, problemes d'emmagatzematge d'energia, etc. Per tant, investigar dispositius eficients d'emmagatzematge d'energia electroquímica i desenvolupar tecnologies avançades de conversió d'energia elèctrica renovable en energia química es torna particularment crucial. El supercondensador és un nou tipus de dispositiu d'emmagatzematge d'energia electroquímica que permet el ràpid cicle de descàrrega i càrrega. La seua major densitat de potència, capacitats de càrrega i descàrrega ràpides, ampli rang de temperatura d'operació i seguretat permeten aplicacions generalitzades en fonts d'alimentació de reserva industrials, vehicles elèctrics, el sector militar i altres camps. Per tant, en la tesi doctoral actual, s'han utilitzat materials d'òxid de metall i fosfurs de metall com a electrodos de supercondensador per a l'estudi dels mecanismes d'emmagatzematge d'energia i explorar el potencial per a aplicacions pràctiques. D'altra banda, convertir l'energia elèctrica sostenible en energia química per a emmagatzematge i utilització també és una forma efectiva, en la qual l'energia elèctrica s'utilitza per a impulsar reaccions químiques no espontànies. La tesi doctoral actual va desenvolupar un catalitzador de fosfurs de metall utilitzant un mètode de síntesi verd i lliure de contaminació i l'aplicà a reaccions electrocatalítiques de divisió d'aigua. Els resultats experimentals mostren que el material pot operar de manera estable durant molt temps a alta densitat de corrent. A més, la conversió electrocatalítica de nitrats a amoníac es considera una ruta eficient per al tractament d'aigües residuals de nitrats i la producció de combustible d'amoníac ric en hidrogen. Vam preparar amb èxit un catalitzador de carburs bimetàlics utilitzant un mètode sonoquímic, que mostra excel·lents propietats de reducció de nitrats de baixa sobretensió i alta eficiència de rendiment d'amoníac. / [EN] The greenhouse effect, caused by the massive consumption of fossil fuels over the past 100 years, has exacerbated the trend of global climate warming and has also severe impact on human health and the ecological environment. Renewable energy power generation technologies are crucial for addressing climate change and achieving energy sustainability, but these technologies also face some common problems and challenges, such as intermittency and unpredictability, grid integration and stability, energy storage issues, etc. Therefore, researching efficient electrochemical energy storage devices and developing advanced energy technologies converting renewable electrical energy into chemical energy becomes particularly crucial. Supercapacitor is a novel type of electrochemical energy storage device that enables the rapid cycle of discharge and charge. Its greater power density, rapid charge-discharge capabilities, wider operating temperature range and safety allow widespread applications in industrial backup power supplies, electric vehicles, the military sector, and other fields. Therefore, in the current doctoral thesis, metal oxides and metal phosphide materials have been employed as supercapacitor electrodes for the study of energy storage mechanisms and explore the potential for practical applications. On the other hand, converting sustainable electrical energy into chemical energy for storage and utilization is also an effective way, in which electrical energy is employed to drive non-spontaneous chemical reactions. The current doctoral thesis developed a metal phosphide catalyst using a green and pollution-free synthesis method and applied it to electrocatalytic water-splitting reactions. Experimental results show that the material can operate stably for a long time at high current density. Furthermore, electrocatalytic conversion of nitrate to ammonia is considered an efficient route for nitrate wastewater treatment and production of hydrogen-rich ammonia fuel. We successfully prepared a bimetallic carbide catalyst using a sonochemical method, which exhibits excellent low overpotential nitrate reduction and high-efficiency ammonia yield properties. / Hu, J. (2024). Metal Oxides, Carbides and Phosphides for Supercapacitor and Electrocatalysis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207537 / Compendio

Page generated in 0.0568 seconds