Spelling suggestions: "subject:"metallocarbenes"" "subject:"metallocomplexes""
1 |
Photochemical Investigation of High-Valent Metal-Oxo Intermediates Containing Corrole and Light-Harvesting Porphyrin LigandsMalone, Jonathan 01 July 2018 (has links)
In enzymatic and synthetic catalytic oxidations, high-valent iron-oxo intermediates play a vital role as the active oxidant. In this regard, many synthetic metal catalysts are designed as biomimetic models to resemble the active site of Cytochrome P450 enzymes (P450) which are the predominant oxidation catalysts in nature. Vitamin B12 cofactors, with a corrole-like structure corrin, are also utilized in some of the more difficult reactions in nature such as rearrangement and reductase reactions.
In this work, application of the promising photochemical method to corrolecontaining ligands systems showed much success in the generation of manganese(V)-oxo corrole intermediates using two electron-deficient corrole ligands 5,10,15-tris-(4- trifluoromethylphenyl) corrole (4-CF3)TPC and 5,10,15-tris-(4-nitrophenyl) corrole (4- NO2)TPC. Homolytic cleavage of the O-N or O-ClO2 bond led to generation of the detectable manganese(V)-oxo corroles which were found to act as a competent oxotransfer agent in the presence of various organic reductants. The reaction was marked by the return to a low-valent manganese(III) corrole through a direct oxygen atom transfer (OAT) pathway or formation of manganese(VI)-oxo corrole and manganese(IV) product through a disproportionation pathway. The photo-generated manganese(V)-oxo corrole intermediates were tested as the oxidizing agent for substrate oxidation reactions.
More importantly, accomplished within this work is the synthesis for a novel porphyrin complex with light-harvesting functionalities. The light harvesting porphyrin complex (L-Por) exhibits remarkable spectral absorption properties within the range of 400-550 nm allowing for the efficient harvesting of a broad spectrum of light. It is expected that the attached antennae chromophores and metalloporphyrin core will absorb visible light and, at the same time, the antennae could transfer energy to the metalloporphyrin core. Ruthenium(II)(L-Por)(CO) was found to efficiently photo-eject the carbonyl ligand when subjected to visible light. Generation of ruthenium(VI)(LPor)( O)2 was achieved through application of sacrificial oxidant iodobenzene diacetate (PhI(OAc)2). Stoichiometric oxidation of ruthenium(VI)(L-Por)(O)2 formed ruthenium(IV)(L-Por)(O) and cis-cyclooctene oxide with observed rate constants that were 10-fold greater under visible light irradiation. Future investigations will employ a bis-porphyrin-diruthenium(IV)-μ-oxo dimeric complex as a potential catalyst in photocatalytic aerobic oxidation reactions.
|
2 |
Visible Light Generation of High-Valent Corrole-Manganese(V)-Oxo Intermediates and Biomimetic Studies of the Oxidation of Organic Sulfides Catalyzed by Manganese Corroles with Iodobenzene DiacetateRanburger, Davis Ray 01 July 2018 (has links)
High-valent transition metal-oxo intermediates play essential roles as active oxidizing species in enzymatic and biomimetic catalytic systems. Extensive research has been conducted on a variety of transition metal catalysts being studied as models for the ubiquitous cytochrome P450 enzymes. In doing so, the production of enzyme-like oxidation catalysts and probing studies on the sophisticated oxygen atom transfer mechanism are taking place.
In this work, visible-light irradiation of highly-photo-labile corrole-manganese(IV) bromates and chlorates was studied in two corrole systems with differing electronic environments, i.e. 5,10,15-trisphenylcorrole (H3TPC) and 5,10,15- tris(pentafluorophenyl)corrole (H3TPFC). In both systems, homolytic cleavage of the O- Br and O-Cl bonds in the ligands was observed to result in one-electron photo-oxidation to afford the corrole-manganese(V)-oxo species as determined by their distinct UV-vis spectra. Kinetics of oxygen atom transfer (OAT) reactions by each photo-generated [MnV(Cor)O] species with various substrates were conducted in two solvents, CH3CN and CH2Cl2. It was found that [MnV(Cor)O] exhibits noteworthy solvent and ligand effects on its reactivity and spectroscopic behavior. In the more electron-withdrawing TPFC species in polar CH3CN solvent, MnV-oxo corrole returned to MnIII corrole following oxidation of substrate. However, the TPFC species in the less polar CH2Cl2 solvent, and in both solvents for the TPC system, MnIV product was formed instead of MnIII. An inverted reactivity pattern, i.e. TPC > TPFC, for the MnV-oxo corroles was observed. These spectral and kinetic results were rationalized by a multiple oxidation pathway model, where either a two-electron oxidation for oxygen atom transfer reactions takes place or a disproportionation reactive takes place forming the elusive manganese(VI)-oxo as the true oxidant. The preferred pathway is highly dependent on the nature of the corrole ligand and the solvent.
Furthermore, a variety of [MnIV(Cor)Cl] complexes were investigated as biomimetic catalysts for the selective catalytic oxidation of the organic sulfide with mild sacrificial oxidant PhI(OAc)2. It was found that catalytic activity was affected by the oxidation state and electron environment of the catalyst. It was also found that in the same TPC system, [MnIV(TPC)Cl] was more reactive than [MnIII(TPC)], presumably due to the MnIV-corrole having easier access to the active metal-oxo intermediates than MnIII-corrole. In the same oxidation state, catalytic sulfoxidation of thioanisole resulted in a slower reaction rate for corrole species with more electron withdrawing ligands. In addition to thioanisole, [MnIV(TPC)Cl] was tested for its reactivity under catalytic conditions for eight other substrates. In most cases, quantitative conversions and excellent selectivity for sulfoxide were achieved.
|
Page generated in 0.0437 seconds