• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 16
  • 12
  • 9
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 196
  • 35
  • 34
  • 27
  • 22
  • 21
  • 20
  • 18
  • 17
  • 17
  • 17
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Synthèse et design de nanorésonateurs optiques actifs dans le visible / Synthesis and design of optical nanoresonators for the visible wavelengths

Many, Véronique 10 December 2018 (has links)
L’étude et la réalisation de métamatériaux auto-assemblés possédant une réponse magnétique aux fréquences optiques font l’objet d’un champ de recherche très actif depuis plusieurs années. De nombreux calculs théoriques ont prédit qu’un arrangement dense de briques élémentaires plasmoniques, « les méta-atomes », conduirait à des matériaux à indice négatif actifs dans le domaine du visible. Il a été démontré qu’un nano-objet ayant un coeur de silice décoré de 12 nanoparticules d’or sphériques permettrait d’optimiser le phénomène de magnétisme optique. Ma thèse repose sur l’élaboration de ces objets à partir de particules colloïdales, parfaitement symétriques, constituées d’un coeur de silice et 12 nodules de polystyrène. Ces nodules de PS pouvant être éliminés ultérieurement par dissolution. Ces objets ont permis de fabriquer des particules de silices décorées d’un nombre précis de « patchs » ou de « fossettes ». Ces objets ont été formés en grande quantité. Nous sommes parvenus à rendre les cavités de surface des particules à fossettes collantes pour des germes d’or de 2-3 nm de diamètre et initier leur croissance. Les mesures de propriétés optiques de ces dodécapodes dorés ont reflété le couplage intense existant entre les nanoparticules plasmoniques autour du coeur diélectrique. La possibilité de faire croitre de l’argent à la surface des germes d’or permet de générer des nanorésonateurs avec des modes magnétiques optiques encore plus intenses que ceux observés pour les systèmes à base d’or. / Over the last decade, the field of self-assembled metamaterials exhibiting unusual properties such as a magnetic response in the visible range represents a challenging and attracting area. Many simulations reported that a dense arrangement of specific plasmonic sub-units called “meta-atoms”, may lead to a material with a negative refractive index. It was reported by computational modelling that a dodecapod clusters made of a central dielectric core and surrounded by a controlled number of satellites (12 satellites, here) with a specific size can exhibited some interesting properties. Here, the purpose was to fabricate such clusters from colloidal particles, which are perfectly symmetrical, made of a silica core and 12 polystyrene nodules. Subsequently, those polystyrene nodules can be dissolved to get silica particles with a specific number of “patches” or “dimples”. Those objects were synthesized in a large quantity. We were able to make those dimples sticky to tiny gold seed of 2-3 nm size and to grow then for a specific size. Optical measurements reported the strong magnetic coupling in-between the plasmonic nanoparticles around the dielectric core. We also reported that growing silver on tiny gold seeds generates stronger magnetic responses than those observed from gold clusters.
82

Metamaterial-Inspired Miniaturized Multi-Band Microwave Filters and Power Dividers

Genc, Alper 01 May 2010 (has links)
Integration of more communication standards in one microwave wireless device created a demand on developing compact, low-cost, and robust multi-band microwave components. This dissertation presents three studies for designing miniaturized and multi-band circuits that can be used for multi-band radio frequency (RF) front-ends. These three studies are the design of dual-band and tunable bandpass filters as well as dual- and triple-band equal-split power dividers/combiners. The dual-band filter is based on split ring resonators and double slit complemantary split ring resonators. A dual-band prototype three-stage Chebyshev filter, with a fractional bandwidth of 2% at 0.9 GHz and a fractional bandwidth of 3% at 1.3 GHz with equal-ripple of 0.4 dB at both passbands, is presented. The overall size of the dual-band filter is three times smaller compared to edge-coupled microstrip filters. Good out-of-band signal rejection (< 38 dB) and insertion losses (< 4.9 dB for the lower passband and <2.7 dB for the upper passband) are achieved. The proposed tunable filter is designed from varactor loaded split ring resonators. The size of the tunable filter is reduced by a factor of 3.5 compared to quarter wavelength-based coupled line filters.The power divider is based on composite right- and left-handed transmission lines. Dual-band and triple-band power divider prototypes are designed, fabricated, and tested. The passbands of the triple-band Wilkinson power divider are centered at 0.8 GHz, 1.3 GHz, and 1.85 GHz, and the passbands of the dual-band Wilkinson power divider are centered at 0.7 GHz, 1.5 GHz. The triple-band divider has a length of 0.66 wavelength in the substrate and its size is reduced to 3/4 of right-handed transmission line-based Wilkinson power dividers. The dual-band power divider has wide fractional bandwidths ( 20% at the lower passband and 41% at the upper passband). Excellent input matchings (input return losses < 29 dB), output matchings (output return losses < 23 dB), and output port isolations (< 24 dB) are achieved at all passbands of the power dividers. The proposed filters and power dividers are compact and low-cost, and are promising candidates for the miniaturization and cost-reduction of multi-band microwave wireless system.
83

Investigation of RF Direct Detection Architecture Circuits for Metamaterial Sensor Applications

Suwan, Na'el January 2011 (has links)
Recent advances in metamaterials research has enabled the development of highly sensitive near-field microwave sensors with unprecedented sensitivity. In this work, we take advantage of the increase in the sensitivity to produce a compact, lightweight, affordable, and accurate measurement system for the applications of microwave imaging and material characterization. This sensitivity enhancement due to the inclusion of metamaterials opens the door for the use of inexpensive microwave components and circuits such as direct detectors while leveraging the high sensitivity of the metamaterial probe to deliver an overall accurate measurement system comparable to that of a traditional probe used in conjunction with a vector network analyzer. The sensor developed is composed of a metamaterial sensor with an RF direct detection circuit. In this work, two prototype measurement systems have been designed and tested. Measurement of small cracks in conductors and material characterization using the proposed system were performed. The results from the newly developed sensors were compared with the results from vector network analyzer measurements. Good agreement was obtained. The feasibility of a compact, lightweight, affordable, and accurate system has been demonstrated by using the developed prototypes.
84

Applications of the Generalized DDA Formalism and the Nature of Polarized Light in Deep Oceans

You, Yu 16 January 2010 (has links)
The first part of this study is focused on numerical studies of light scattering from a single microscopic particle using the Discrete Dipole Approximation (DDA) method. The conventional DDA formalism is generalized to two cases: (a) inelastic light scattering from a dielectric particle and (b) light scattering from a particle with magnetic permeability u /= 1. The first generalization is applied to simulations of Raman scattering from bioaerosol particles, and the second generalization is applied to confi rmation of irregular invisibility cloaks made from metamaterials. In the second part, radiative transfer in a coupled atmosphere-ocean system is solved to study the asymptotic nature of the polarized light in deep oceans. The rate at which the radiance and the polarization approach their asymptotic forms in an ideal homogeneous water body are studied. Effects of the single scattering albedo and the volume scattering function are studied. A more realistic water body with vertical pro files for oceanic optical properties determined by a Case 1 water model is then assumed to study the e ffects of wavelength, Raman scattering, and surface waves. Simulated Raman scattering patterns computed from the generalized DDA formalism are found to be sensitive to the distribution of Raman active molecules in the host particle. Therefore one can infer how the Raman active molecules are distributed from a measured Raman scattering pattern. Material properties of invisibility cloaks with a few irregular geometries are given, and field distributions in the vicinity of the cloaked particles computed from the generalized DDA formalism con rm that the designated material properties lead to invisibility. The radiative transfer model calculation in deep oceans suggest that the underwater radiance approaches its asymptotic form more quickly than the polarization does. Therefore, a vector radiative transfer solution is necessary for asymptotic light field studies. For a typical homogeneous water body whose scattering property is characterized by the Petzold phase function, a single scattering albedo of w0 > 0:8 is required in order that the asymptotic regime can be reached before there are too few photons to be detected.
85

Implementation of MIMO Antenna with Broadband Isolation for Portable Applications

Hsu, Chih-chun 16 July 2009 (has links)
In the thesis, we use the concept of single-negative metamaterials to reduce the antennas¡¦ coupling. Firstly, the multilayer insulator is proposed to enhance the isolation bandwidth. The isolation bandwidth is broadened by adjusting the individual layer of insulators with close but different operating frequencies. Then, the designed multilayer insulator is inserted in a planar antenna system. Isolation of the MIMO antenna system is below than -20dB. The measured and simulated isolation bandwidth is 8% and 6.9%, respectively. We then design dual-band insulators for dual-band MIMO antenna applications. The proposed dual-band insulator is implemented bystacking the insulators with different operating bands and the isolation of the dual-band MIMO antenna can be improved at both 2.6 and 3.5GHz bands. In the broadband insulator design, the T-shaped branch is proposed to broadenthe operating bandwidth. The measured isolation bandwidth is improved by 12.8% than that of the multilayer insulator. The bandwidth of the proposed broadband insulator can be used in other broadband communication standards.
86

Advances in Non-Foster Circuit Augmented, Broad Bandwidth, Metamaterial-Inspired, Electrically Small Antennas

Zhu, Ning 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / There are always some intrinsic tradeoffs among the performance characteristics: radiation efficiency, directivity, and bandwidth, of electrically small antennas (ESAs). A non-Foster enhanced, broad bandwidth, metamaterial-inspired, electrically small, Egyptian axe dipole (EAD) antenna has been successfully designed and measured to overcome two of these restrictions. By incorporating a non-Foster circuit internally in the near-field resonant parasitic (NFRP) element, the bandwidth of the resulting electrically small antenna was enhanced significantly. The measured results show that the 10 dB bandwidth (BW10dB) of the non-Foster circuit-augmented EAD antenna is more than 6 times the original BW10dB value of the corresponding passive EAD antenna.
87

Chirality of Light and Its Interaction with Chiral Matter

Tang, Yiqiao 18 March 2013 (has links)
This thesis conducts a systematic study on the chirality of light and its interaction with chiral matter. In the theory section, we introduce a measure of local density of chirality, applying to arbitrary electromagnetic fields. This optical chirality suggests the existence of superchiral modes, which are more selective than circularly polarized light (CPL) in preferentially exciting single enantiomers in certain regions of space. Experimentally, we demonstrate an 11-fold enhancement over CPL in discriminating chiral fluorophores of single handedness in a precisely sculpted superchiral field. This result agrees to within 15% with theoretical predictions. Any chiral configuration of point charges is beyond the scope of our theory on optical chirality. To address chiroptical excitations at nanoscale, we develop a model of twisted dipolar oscillators. We design a simple tunable chiral nanostructure and observe localized chiroptical “hot spots” with dramatically enhanced circular differential scattering. Our work on superchiral light and 3D chiral metamaterials establishes optical chirality as a fundamental and tunable property of light, with implications ranging from plasmonic sensors, absolute asymmetric synthesis to new strategies for fabricating three-dimensional chiral metamaterials. This thesis is organized as such: Chapter 1 provides a background on previous studies of chiroptical phenomena, and recent efforts in preparing chiral metamaterials. Chapter 2 derives theory on optical chirality, superchiral modes and coupled-dipolar oscillators at nanoscale. Chapter 3 introduces material, apparatus, and pitfalls in chiroptical experiments. Chapter 4 is an overview of the experimental procedure and results on generating and observing superchiral enhancement. Chapter 5 describes the experiments on using spectroscopic polarization microscopy to study chiral 3D chiral metamaterials. Finally in Chapter 6, I discuss quantization of optical chirality and perspectives on future directions. / Physics
88

Two-Dimensional Plasmonics in Massive and Massless Electron Gases

Yoon, Hosang 21 October 2014 (has links)
Plasmonic waves in solid-state are caused by collective oscillation of mobile charges inside or at the surface of conductors. In particular, surface plasmonic waves propagating at the skin of metals have recently attracted interest, as they reduce the wavelength of electromagnetic waves coupled to them by up to ~10 times, allowing one to create miniaturized wave devices at optical frequencies. In contrast, plasmonic waves on two-dimensional (2D) conductors appear at much lower infrared and THz-GHz frequencies, near or in the electronics regime, and can achieve far stronger wavelength reduction factor reaching well above 100. In this thesis, we study the unique machinery of 2D plasmonic waves behind this ultra-subwavelength confinement and explore how it can be used to create various interesting devices. To this end, we first develop a physically intuitive theoretical formulation of 2D plasmonic waves, whose two main components---the Coulomb restoration force and inertia of the collectively oscillating charges---are combined into a transmission-line-like model. We then use this formulation to create various ultra-subwavelength 2D plasmonic devices. For the 2D conductor, we first choose GaAs/AlGaAs heterostructure---a 2D electron gas consisting of massive (m*>0) electrons---demonstrating plasmonic bandgap crystals, interferometers, and negatively refracting metamaterials. We then examine a 2D plasmonic device based on graphene, a 2D electron gas consisting of effectively massless (m*=0) electrons. We theoretically show and experimentally demonstrate that the massless electrons in graphene can surprisingly exhibit a collective mass when subjected to a collective excitation, providing the inertia that is essential for the propagation of 2D plasmonic waves. Lastly, we theoretically investigate the thermal current fluctuation behaviors in massive and massless electron gases. While seemingly unrelated on first sight, we show that the thermal current fluctuation is actually intimately linked to the collective mass of the massive or massless electron gas. Thus, we show that the thermal current fluctuation behaviors can also be described by the same theoretical framework introduced earlier, suggesting a possibility to design new concept devices and experiments based on this linkage. / Engineering and Applied Sciences
89

Quantum and Classical Optics of Dispersive and Absorptive Structured Media

Bhat, Navin Andrew Rama 26 February 2009 (has links)
This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schr\"{o}dinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF$_2$ metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100$\%$ or more for common media regardless of geometry if the pump is near the band edge. Furthermore, I derive a 3D three-wave group velocity walkoff factor; due to the interplay of a topological property with a symmetry property, I show that even if down-conversion is into a narrow forward cone, neglect of the transverse walkoff can lead to an overestimate of the SPDC energy by orders of magnitude.
90

Quantum and Classical Optics of Dispersive and Absorptive Structured Media

Bhat, Navin Andrew Rama 26 February 2009 (has links)
This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schr\"{o}dinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF$_2$ metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100$\%$ or more for common media regardless of geometry if the pump is near the band edge. Furthermore, I derive a 3D three-wave group velocity walkoff factor; due to the interplay of a topological property with a symmetry property, I show that even if down-conversion is into a narrow forward cone, neglect of the transverse walkoff can lead to an overestimate of the SPDC energy by orders of magnitude.

Page generated in 0.0627 seconds