Spelling suggestions: "subject:"metathesis"" "subject:"mathesis""
1 |
Studies towards a catalytic asymmetric isomerization of manganese complexed alkynes to allenes using chiral basesUnknown Date (has links)
The conversion of alkynyl carbonyls to allenyl carbonyls via manganese mediated coordination followed by a base-catalyzed isomerization was carried out using a range of chiral and achiral amine bases. Chiral amidine and chiral DBU derivatives were synthesized to carry out the isomerization enantioselectively. We employed HPLC equipped with a chiral column to determine the enantiomeric excess. We also proved that the mechanism of that the manganese-coordinated alkyne/allene rearrangement reaction involved an intermediate cumenolate. It was also confirmed that amine base with pKa lower than that of DBU (pKa = 13.6) would not carry out the isomerization. Alkoxy base were also used in isomerization and the mechanism was also investigated. / by Chang He. / Thesis (M.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
2 |
From olefin metathesis to organoruthenium homogeneous catalysis : synthesis, applications and mechanistic understandingManzini, Simone January 2014 (has links)
Olefin metathesis is a valuable synthetic tool, widely used in several fields of science. Due to the importance of this transformation several contributions have been made in this field in order to understand mechanistic aspects, reactivity and applicability of this process. In this topic, ruthenium indenylidene complexes have shown great activity and stability in metathesis, making them very valuable pre-catalysts. However, several aspects of these pre-catalysts have not been evaluated yet. For example, even though reports of active second generation ruthenium indenylidene complexes bearing bulky N-heterocyclic carbenes are present in the literature, no studies have been done to understand how steric hindrance affects the process. For these reasons, [RuCl₂(IPr*)(PPh₃)(3-phenylindenylidene)] (IPr*-PPh₃) and [RuCl₂(IPr*)(Py)(3-phenylindenylidene)] (IPr*-Py), bearing the very bulky ligand, IPr* have been synthesised and compared with [RuCl₂(IPr)(PPh₃)(3-phenylindenylidene)] (IPr-PPh₃) and the new [RuCl₂(IPr)(Py)(3-phenylindenylidene)] (IPr-Py). Another important aspect, presented in this thesis, is the investigation of the stability of indenylidene pre-catalysts in alcohol solvents. Surprisingly, several different decomposition processes occur depending on the starting complex and the alcohol used. Mechanistic investigation into this decomposition, allowed us to develop a better understanding of this process, and to predict the decomposition product based on the environment. In particular, this study revealed that [RuCl(η⁵-3-phenylindenyl)(PPh₃)₂] (Eta-5) is accessed from [RuCl₂(3-phenylindenylidene)(PPh₃)₂] (M₁₀) via a novel indenylidene to η⁵-indenyl rearrangement. This formal decomposition product has been found to be active in at least 20 different catalytic transformations, rendering it a versatile catalytic tool.
|
Page generated in 0.2111 seconds