• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 25
  • 24
  • 15
  • 12
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 261
  • 51
  • 42
  • 39
  • 38
  • 38
  • 32
  • 30
  • 29
  • 28
  • 25
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Screening of Norbaeocystin Methyltransferase Variants Enables Enhanced Psilocybin and Baeocystin Production in E. coli

McKinney, Madeline Gray 20 April 2023 (has links)
No description available.
132

Functions of Protein Arginine Methyltransferase 5 in Skeletal Muscle Development and Homeostasis

Kun Ho Kim (15324796) 01 August 2023 (has links)
<p>We have provided the significance of Protein Methyltransferase 5 on skeletal muscle function and muscle development.</p>
133

Remote solid cancers rewire hepatic nitrogen metabolism via host nicotinamide-N-methyltransferase / 固形腫瘍は宿主のニコチンアミドメチル基転移酵素を介して遠隔にある肝臓の窒素代謝を撹乱する

Mizuno, Rin 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24516号 / 医博第4958号 / 新制||医||1064(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊藤 貴浩, 教授 岩田 想, 教授 武藤 学 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
134

ATF5-Expression und MGMT-Promotormethylierungsänderungen in glialen Tumoren / ATF5-expression and alterations of the MGMT promoter methylation status in glial tumors

Feldheim, Jonas Alexander January 2021 (has links) (PDF)
Die WHO-Klassifikation der Hirntumoren von 2016 ebnete den Weg für molekulare Marker und Therapie-Angriffspunkte. Der Transkriptionsfaktor ATF5 könnte ein solcher sein. Er unterdrückt die Differenzierung von neuronalen Vorläuferzellen und wird in Glioblastomen (GBM) überexprimiert. Daten zur ATF5-Expression in WHO Grad II Gliomen (LGG) und GBM-Rezidiven sind nur spärlich vorhanden. Daher untersuchten wir 79 GBM, 40 LGG und 10 Normalhirnproben auf ihre ATF5-mRNA- und Proteinexpression mit quantitativer Echtzeit-PCR bzw. Immunhistochemie und verglichen sie mit multiplen, retrospektiv erhobenen klinischen Charakteristika der Patienten. ATF5 war in LGG und GBM verglichen zum Normalhirn sowohl auf mRNA-, als auch Proteinebene überexprimiert. Obwohl die ATF5-mRNA-Expression im GBM eine erhebliche Fluktuationsrate zeigte, gab es keine signifikanten Expressionsunterschiede zwischen GBM-Gruppen unterschiedlicher biologischer Wachstumsmuster. ATF5-mRNA korrelierte mit dem Alter der Patienten und invers mit der Ki67-Färbung. Kaplan Meier- und Cox-Regressionsanalysen zeigten eine signifikante Korrelation der ATF5-mRNA-Expression mit dem Überleben nach 12 Monaten sowie dem progressionsfreien Überleben. Die Methylierung des Promotors der O6-Methylguanin-DNA-Methyltransferase (MGMT) ist ein etablierter Marker in der Therapie des GBMs. Sie ist mit dem therapeutischen Ansprechen auf Temozolomid und dem Überleben assoziiert. Uns fielen inzidentell Veränderungen der MGMT-Promotormethylierung auf, woraufhin wir den aktuellen Wissensstand mittels einer ausführlichen Literatur-Metaanalyse zusammenfassten. Dabei fanden wir Veränderungen der MGMT-Promotormethylierung bei 115 der 476 Patienten. Wir schlussfolgern, dass die ATF5-mRNA-Expression als prognostischer Faktor für das Überleben der Patienten dienen könnte. Da seine in vitro-Inhibition zu einem selektiven Zelltod von Gliomzellen führte und wir eine Überexpression in glialen Tumoren nachweisen konnten, zeigt ATF5 Potential als ubiquitäres Therapieziel in Gliomen. Zum aktuellen Zeitpunkt ergibt sich keine klare Indikation, den klinischen Standard der MGMT-Teststrategie zu verändern. Trotzdem könnte eine erneute Testung der MGMT-Promotormethylierung für zukünftige Therapieentscheidungen sinnvoll sein und wir regen an, dass dieses Thema in klinischen Studien weiter untersucht wird. / The 2016 WHO classification for brain tumors signaled a major paradigm shift and paves the way for molecular markers and molecular targets. One such target could be the transcription factor ATF5. It suppresses differentiation of neuroprogenitor cells and is overexpressed in glioblastoma (GBM). Data on ATF5 expression in glioma of WHO grade II (LGG) are scarce and lacking on recurrent GBM. Therefore, we examined 79 GBM, 40 LGG and 10 normal brain (NB) specimens for their ATF5-mRNA and protein expression by quantitative real-time PCR and immunohistochemistry, respectively, and compared it to multiple retrospectively obtained clinical characteristics of the patients. ATF5-mRNA was overexpressed in LGG and GBM compared to NB on mRNA and protein level. Although ATF5-mRNA expression in GBM showed a considerable fluctuation range, GBM groups of varying biological behavior were not significantly different. ATF5-mRNA correlated with the patients' age and inversely with Ki67-staining. Kaplan-Meier analysis and Cox regression indicated that ATF5-mRNA expression was significantly associated with survival after 12 months and progression-free survival. Methylation of the O6-Methylguanin DNA methyltransferase (MGMT) promoter is a well-established strong prognostic factor in the therapy of GBM. It is associated with an improved response to chemotherapy with temozolomide and longer overall survival. We made the incidental finding of patients with changing MGMT promoter methylation during the clinical course, which prompted us to further investigate this topic. Indeed, a meta-analysis of the literature revealed changes in MGMT promoter methylation in 115 of 476 patients. To conclude, ATF5-mRNA expression could be identified as an additional, though not independent factor correlating with patients‘ survival. Since its inhibition might lead to the selective death of glioma cells, it might serve as a potential ubiquitous therapeutic target in astrocytic tumors. Clinical implications of the observed changes in MGMT promoter methylation are still ambiguous and do not yet support a change in clinical practice. However, retesting MGMT methylation might be useful for future treatment decisions and we encourage clinical studies to address this topic.
135

Characterization of the N-terminal region of tRNA m1G9 methyltransferase (Trm10)

Kim, Hyejeong 29 August 2013 (has links)
No description available.
136

Studies on a 50S Ribosomal Precursor Particle as a Substrate for <em>erm </em>E Methyltransferase Enzyme in <em>Staphylococcus aureus </em>.

Pokkunuri, Indira 05 May 2007 (has links) (PDF)
Erythromycin is a macrolide antibiotic that inhibits not only mRNA translation but also 50S ribosomal subunit assembly in bacterial cells. An important mechanism of erythromycin resistance is the methylation of 23S rRNA by erm methyl transferase enzymes. We are interested in investigating the true substrate for methylation because it is known from our work and the work of others that fully assembled 50S subunits are not substrates for methylation. We have published a model for 50S ribosomal subunit formation where, the precursor particle that accumulates in erythromycin treated cells is a target for methyl transferase activity. Current studies are aimed at investigating the role of the precursor particle as substrate for ermE methyltransferase activity and the competition between this enzyme and erythromycin for the 50S precursor particle. Slot-blot hybridization experiments have identified the presence of 23S rRNA in the 50S precursor region. Quantitation of the 23S rRNA in these blots also revealed that the percentage of the precursor increased as the concentration of erythromycin was increased in the growth media. Ribosomal proteins of S. aureus were studied by two-dimensional gel electrophoresis. Protein content of the 50S precursor particle was analyzed by MALDI-TOF. These studies have identified 16 50S ribosomal proteins in the precursor region. Methyltransferase assays showed that 50S precursor particle was a substrate for ermE methyltransferase. Importantly, RNA that is already assembled into 50S subunits was not a substrate for the enzyme. Inhibition curves showed that macrolide, lincosamide, and streptogramin B (MLSB) drugs bound to the precursor particle with similar affinity and inhibited the ermE methyltransferase activity. Competition experiments suggested that the enzyme can displace erythromycin from the 50S precursor particle and that erm methyltransferase has a lower association constant for the precursor particle compared to that of the erythromycin. This suggests that higher concentrations of erythromycin are needed to combat erm induced resistance. These studies shed light on the interaction of ermE methyltransferase and erythromycin in the clinically important pathogen S. aureus.
137

Cloning and Biochemical characterization of a methyltransferase from Arabidopsis involved in choline and phospholipid metabolism

BeGora, Michael D. January 2010 (has links)
<p> In plants, phosphocholine (PCho) is a precursor to the membrane component phosphatidylcholine (PtdCho) and free choline (Cho). A mutant Saccharomyces cerevisiae yeast strain unable to produce PtdCho without exogenous choline was used for transformation with an Arabidopsis cDNA library cloned in the yeast expression vector pFK61. A plant cDNA associated with locus At1g48600 functionally complemented the mutant by restoring growth on minimal synthetic medium lacking choline but containing the phosphobase phosphomethylethanolamine (PMEA). Crude extracts prepared from the yeast showed a novel capacity to convert PMEA to phosphodimethylethanolamine (PDEA) and PCho and hence this enzyme has been named Arabidopsis S-adenosyl-L-methionine (AdoMet): phosphomethylethanolamine N-methyltransferase (AtPMEAMT). </p> <p> AtPMEAMT is a bipartite enzyme containing tandem N-and C-terminal AdoMet-binding domains. The predicted amino acid sequence shows an 87% identity to the previously characterized AdoMet: phosphoethanolamine N-methyltransferase (AtPEAMT) from Arabidopsis. An important distinction between AtPMEAMT and AtPEAMT is that the former enzyme is unable to methylate phosphoethanolamine (PEA). However, both AtPEAMT and AtPMEAMT can methylate PMEA and PDEA, two phosphobase intermediates ofPCho synthesis. The apparent Km values were determined for AtPEAMT and AtPMEAMT toward PMEA and PDEA and found to be 0.32 and 0.14 mM, respectively, for PEAMT and 0.16 and 0.03 mM, respectively, for PMEAMT. The N-and C-terminal Ado Met-domains of PEAMT and PMEAMT were cloned separately into a pET30a(+) vector for protein expression and extracts containing recombinant proteins were assayed for phosphobase methyltransferase activity. Only the gene product encoding the domain associated with the C-terminal half of PMEAMT methylated both PMEA and PDEA, an activity found with the native protein. A chimera was produced by combining the N-terminal half ofPEAMT and the C-terminal half of PMEAMT. The chimeric protein is able to methylate PEA, PMEA and PDEA indicating that a feature associated with the N-terminal half of PEAMT is required for PEA methylation. This result suggests that differences associated with the N-terminal domain are likely responsible for the inability ofPMEAMT to use PEA as a substrate. </p> <p> An Arabidopsis mutant line with a T-DNA insertion in the promoter region of PMEAMT (SALK 006037) was obtained and RT-PCR analysis of plants homozygous for the insert showed that the mutant lacks transcripts associated with this gene. Relative to wild-type plants grown under identical conditions the mutant plants showed no visible difference in morphological or developmental phenotype. However, shotgun lipidomics using electrospray ionization tandem mass spectrometry showed a 2.1-fold greater abundance ofa 34:3 phosphatidylmethylethanolamine (PtdMEA) molecular species in mutant plants compared to wild-type. One biological role of PMEAMT may be to reduce the likelihood for PtdMEA incorporation into phospholipids ofmembranes. PtdMEA incorporation in membranes is associated with reduced viability of yeast but its effect on the physiology ofplants is, as yet, unknown. </p> / Thesis / Doctor of Philosophy (PhD)
138

Anoxic quaternary amine utilization by archaea and bacteria through a non-<i>L</i>-pyrrolysine methyltransferase; insights into global ecology, human health, and evolution of anaerobic systems

Ticak, Tomislav 27 April 2015 (has links)
No description available.
139

CRYSTAL STRUCTURE DETERMINATION OF METALLOPROTEINS:PEPTIDE DEFORMYLASE, FIXL HEME DOMAIN, MONOMETHYLAMINE METHYLTRANSFERASE, AND CARBON MONOXIDE DEHYDROGENASE

Hao, Bing 20 December 2002 (has links)
No description available.
140

Role of DNA methyltransferase 3B in neuronal cell differentation

Bai, Shoumei 12 September 2005 (has links)
No description available.

Page generated in 0.0914 seconds