• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 25
  • 24
  • 15
  • 12
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 261
  • 51
  • 42
  • 39
  • 38
  • 38
  • 32
  • 30
  • 29
  • 28
  • 25
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Isolation and characterization of novel O-methyltransferase involved in benzylisoquinoline alkaloids biosynthesis in Eschscholzia californica / ハナビシソウベンジルイソキノリンアルカロイド生合成に関わる新規O-メチル化酵素の単離と機能解析

Purwanto 24 November 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第20780号 / 生博第386号 / 新制||生||51(附属図書館) / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 佐藤 文彦, 教授 河内 孝之, 教授 福澤 秀哉 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
62

Substrate specificity of the Trm10 m1R9 tRNA methyltransferase family

Howell, Nathan W. 02 October 2019 (has links)
No description available.
63

Novel and conserved roles of the histone methyltransferase DOT1B in trypanosomatid parasites / Neue und konservierte Rollen der Histonmethyltransferase DOT1B in Parasiten der Ordnung Trypanosomatida

Eisenhuth, Nicole Juliana January 2021 (has links) (PDF)
The family of trypanosomatid parasites, including the human pathogens Trypanosoma brucei and Leishmania, has evolved sophisticated strategies to survive in harmful host environments. While Leishmania generate a safe niche inside the host’s macrophages, Trypanosoma brucei lives extracellularly in the mammalian bloodstream, where it is constantly exposed to the attack of the immune system. Trypanosoma brucei ensures its survival by periodically changing its protective surface coat in a process known as antigenic variation. The surface coat is composed of one species of ‘variant surface glycoprotein’ (VSG). Even though the genome possesses a large repertoire of different VSG isoforms, only one is ever expressed at a time from one out of the 15 specialized subtelomeric ‘expression sites’ (ES). Switching the coat can be accomplished either by a recombination-based exchange of the actively-expressed VSG with a silent VSG, or by a transcriptional switch to a previously silent ES. The conserved histone methyltransferase DOT1B methylates histone H3 on lysine 76 and is involved in ES regulation in T. brucei. DOT1B ensures accurate transcriptional silencing of the inactive ES VSGs and influences the kinetics of a transcriptional switch. The molecular machinery that enables DOT1B to execute these regulatory functions at the ES is still elusive, however. To learn more about DOT1B-mediated regulatory processes, I wanted to identify DOT1B-associated proteins. Using two complementary approaches, specifically affinity purification and proximity-dependent biotin identification (BioID), I identified several novel DOT1B-interacting candidates. To validate these data, I carried out reciprocal co-immunoprecipitations with the most promising candidates. An interaction of DOT1B with the Ribonuclease H2 protein complex, which has never been described before in any other organism, was confirmed. Trypanosomal Ribonuclease H2 maintains genome integrity by resolving RNA-DNA hybrids, structures that if not properly processed might initiate antigenic variation. I then investigated DOT1B’s contribution to this novel route to antigenic variation. Remarkably, DOT1B depletion caused an increased RNA-DNA hybrid abundance, accumulation of DNA damage, and increased VSG switching. Deregulation of VSGs from throughout the silent repertoire was observed, indicating that recombination-based switching events occurred. Encouragingly, the pattern of deregulated VSGs was similar to that seen in Ribonuclease H2-depleted cells. Together these data support the hypothesis that both proteins act together in modulating RNA-DNA hybrids to contribute to the tightly-regulated process of antigenic variation. The transmission of trypanosomatid parasites to mammalian hosts is facilitated by insect vectors. Parasites need to adapt to the extremely different environments encountered during transmission. To ensure their survival, they differentiate into various specialized forms adapted to each tissue microenvironment. Besides antigenic variation, DOT1B additionally affects the developmental differentiation from the mammalian-infective to the insect stage of Trypanosoma brucei. However, substantially less is known about the influence of chromatin-associated proteins such as DOT1B on survival and adaptation strategies of related Leishmania parasites. To elucidate whether DOT1B’s functions are conserved in Leishmania, phenotypes after gene deletion were analyzed. As in Trypanosoma brucei, generation of a gene deletion mutant demonstrated that DOT1B is not essential for the cell viability in vitro. DOT1B deletion was accompanied with a loss of histone H3 lysine 73 trimethylation (the lysine homologous to trypanosomal H3K76), indicating that Leishmania DOT1B is also solely responsible for catalyzing this post-translational modification. As in T. brucei, dimethylation could only be observed during mitosis/cytokinesis, while trimethylation was detectable throughout the cell cycle in wild-type cells. In contrast to the trypanosome DOT1B, LmxDOT1B was not essential for differentiation in vitro. However, preliminary data indicate that the enzyme is required for effective macrophage infection. In conclusion, this study demonstrated that the identification of protein networks and the characterization of protein functions of orthologous proteins from related parasites are effective tools to improve our understanding of the parasite survival strategies. Such insights are a necessary step on the road to developing better treatments for the devastating diseases they cause. / Vertreter der Familie der Trypanosomatidae einschließlich der humanpathogenen Trypanosoma brucei und Leishmania Arten entwickelten eine Reihe von ausgeklügelten Strategien, um in ihren Wirten zu überleben. Während sich Leishmanien eine sichere Nische in den Makrophagen ihrer Wirte aufbauen, lebt Trypanosoma brucei ausschließlich extrazellulär im Blutkreislauf der Säugetiere. Dort ist der Parasit ständig dem Angriff des Immunsystems ausgesetzt. Um sein Überleben zu sichern, wechselt er regelmäßig seine variablen Oberflächenproteine (VSG), eine Strategie, die auch als antigene Variation bekannt ist. Obwohl das Genom des Parasiten über ein enormes Repertoire an VSG Genen verfügt, wird immer nur eine einzige Art von einer von 15 spezialisierten telomerproximalen Expressionsstellen (ES) transkribiert. Um die VSG-Zelloberfläche zu wechseln, können Trypanosomen das VSG Gen der aktiven ES gegen ein inaktives VSG aus dem gigantischen Repertoire mittels Rekombination eintauschen. Eine weitere Möglichkeit ist der Transkriptionswechsel zu einer zuvor stillen ES. Die konservierte Histonmethyltransferase DOT1B katalysiert die Methylierung von Histon H3 am Lysin 76 und ist an der ES-Regulation beteiligt. DOT1B gewährleistet den transkriptionell inaktiven Status der ES und beeinflusst die Kinetik eines transkriptionellen ES Wechsels. Die molekularen Komponenten, die DOT1B diese regulatorischen Funktionen an der ES ermöglichen, sind jedoch noch unbekannt. Um mehr über die von DOT1B vermittelten Mechanismen zu erfahren, ist es notwendig, DOT1B-assoziierte Proteine zu identifizieren. Durch die Anwendung von komplementären biochemischen Proteinaufreinigungsmethoden gelang es mir, mehrere potentielle Proteininteraktionen zu DOT1B zu entdecken. Um die Daten zu validieren, führte ich weitere Proteinaufreinigungen mit den vielversprechendsten Kandidaten durch. Eine Interaktion zwischen DOT1B und der Ribonuklease H2 konnte bestätigt werden - eine Interaktion, die noch nie zuvor in anderen Organismen beschrieben wurde. In Trypanosomen gewährleistet Ribonuklease H2 die Genomintegrität, indem das Enzym RNA-DNA-Hybride auflöst. Diese Strukturen können zudem, wenn sie nicht richtig prozessiert werden, antigene Variation initiieren. In dieser Studie wurde daher außerdem DOT1B’s Beitrag zu diesem Weg der Initiation der antigenen Variation analysiert. In der Tat konnte gezeigt werden, dass DOT1B RNA-DNA-Hybride moduliert und die Genomintegrität sowie VSG-Wechselrate beeinflusst. Die Tatsache, dass in DOT1B-Mutanten VSG Isoformen von den unterschiedlichsten Genomregionen exprimiert wurden, deutet darauf hin, dass rekombinations-basierte Ereignisse dem VSG-Wechsel zu Grunde lagen. Da in den DOT1B-Mutanten ähnliche VSG exprimiert wurden wie in Ribonuklease H2-Mutanten, kann vermutet werden, dass beide Proteine bei der Modulation der RNA-DNA-Hybride zusammenwirken, um antigene Variation zu regulieren. Trypanosomen und Leishmanien werden mittels Insektenvektoren auf den nächsten Säugerwirt übertragen. Sie müssen daher nicht nur im Säugerwirt überleben, sondern sich auch an die extrem unterschiedliche Umgebung im Vektor anpassen. Dafür differenzieren sich die Parasiten in speziell angepasste Zellstadien. Zusätzlich zu der antigenen Variation beeinflusst DOT1B die Entwicklungsdifferenzierung in Trypanosoma brucei. In Leishmanien hingegen ist über den Einfluss von chromatin-assoziierten Proteinen wie DOT1B auf die Überlebens- und Anpassungsstrategien wesentlich weniger bekannt. Um herauszufinden, ob die Funktionen von DOT1B in Leishmanien konserviert sind, wurden Phänotypen nach Gendeletion analysiert. Wie auch in Trypanosoma brucei konnte gezeigt werden, dass DOT1B für das Überleben der Parasiten nicht essentiell ist. Die Deletion von DOT1B ging mit einem Verlust der Trimethylierung von Histon H3 am Lysin 73 (dem zum trypanosomalen H3K76 homologen Lysin) einher, was darauf hinweist, dass DOT1B auch in Leishmanien allein für die Katalyse dieser posttranslationalen Modifikation verantwortlich ist. Wie in Trypanosoma brucei konnte eine Dimethylierung nur in der Mitose/Zytokinese beobachtet werden, wobei die Trimethylierung während des gesamten Zellzyklus in Wildtyp-Zellen nachweisbar war. Im Gegensatz zum trypanosomalen DOT1B war LmxDOT1B für die Differenzierung in vitro entbehrlich. Vorläufige Daten zeigen jedoch, dass das Enzym für eine wirksame Makrophageninfektion wesentlich ist. Zusammenfassend zeigte diese Studie, dass die Identifizierung von Proteinnetzwerken und die Charakterisierung von Funktionen orthologer Proteine aus verwandten Parasiten wirksame Werkzeuge sind, um unser Verständnis der Überlebensstrategien der Parasiten zu verbessern. Solche Erkenntnisse sind ein notwendiger Schritt auf dem Weg zu effektiveren Behandlungsmethoden für die verheerenden Krankheiten, die diese Parasiten verursachen.
64

Setd1 Histone 3 Lysine 4 Methyltransferase Complex Components in Epigenetic Regulation

Pick-Franke, Patricia A. 16 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Setd1 histone 3 lysine 4 methyltransferases are critical for epigenetic regulation and gene expression. Setd1a is multiprotein complex comprised of several critical subunits including wdr82, which is essential for embryonic development, and cfp1, critical for regulation of both activation and repression of transcriptional programs required in basic and developmental cellular processes.
65

Functional Dynamics of ASH1L Histone Methyltransferase and its Activation mechanism(s)

Al-Harthi, Samah 03 1900 (has links)
The human Absent, small, or homeotic disc1 (ASH1L) is a member of the Trithorax group (TrxG) proteins that play a role in epigenetic gene activation of developmental HOX genes via H3K36me2 methylation mark. ASH1L contains the evolutionarily conserved SET domain responsible for catalyzing monomethylated and dimethylated lysine formation. The crystal structure of the SET domain of ASH1L revealed a substrate-binding pocket blockage caused by an autoinhibitory loop (AI-loop) that undergoes dynamic changes during catalysis and could be exploited for inhibitor development. Studies have shown that the AI-loop regulates the SET domain, thus the KMTase activity of ASH1L. The SET domain adopts an autoinhibited state where the AI-loop blocks the entry of substrate to the active site, have made it a difficult target for the development of inhibitors. The emerging ASH1L's role in multiple oncogenic processes leading to cancer makes it a viable therapeutic target. Effective targeted inhibition of ASH1L enzymatic activity would be a potential therapeutic approach in cancers driven by high HOX gene expression. We employed the state-of-the-art 1H and 13C-detected solution NMR to better understand the ASH1L regulatory mechanism. We investigated the AI-loop's dynamic structure and conformational mobility of backbone and side chains in the absence and presence of the first- in-class small molecule inhibitors. Numerous backbone amide signals across the AI loop and the catalytic cleft of the SET domain are being broadened, indicating the complex interplay of fast local to slow segmental dynamics across the ASH1L SET domain. The binding of the first-in-class inhibitors perturbs the signals around the AI-loop and SAM binding cleft, validating the inhibitor binding site in the solution. The recently published crystal structures of the MRG domain bound to the ASH1L SET domain revealed disordered conformations of the AI-loop and rearrangement in the SAM binding site compared to the apo ASH1L SET domain. It has been proposed that MRG15 allosterically activates ASH1L by releasing the AI loop. Therefore, we performed extensive studies in an aqueous solution to understand the role of MRG15 in stimulating the catalytic activity of ASH1L. We found that the full-length MRG15 is necessary to induce histone methyltransferase activity of the catalytic SET domain of ASH1L. In contrast, the MRG domain alone cannot enhance the catalytic activity. Furthermore, we found that only the complex of ASH1L SET domain with MRG15 but not with isolated MRG domain can interact with nucleosomes. In summary, I have established the direct link between the structural dynamics of the ASH1L SET domain and its enzymatic activity. Moreover, I have defined the adaptor role of the complete MRG15 protein as the substrate recognition factor for the ASH1L protein without perturbing the AI loop or SAM binding site. The atomic level studies mentioned above, supported by the detailed structure and dynamics studies of the first-in-class inhibitor complex with ASH1L, establish the solid foundations for further drug candidate development, selectively targeting the ASH1L and potentially other H3K36me2 methyltransferases.
66

Investigation of the Role of Bacterial Ribosomal RNA Methyltransferase Enzyme RsmC in Ribosome Biogenesis

G C, Keshav 24 May 2021 (has links)
No description available.
67

Protein Arginine Methyltransferase Expression, Localization, and Activity During Disuse-induced Skeletal Muscle Plasticity / PRMT BIOLOGY DURING SKELETAL MUSCLE DISUSE

Stouth, Derek W. January 2017 (has links)
PRMT biology during skeletal muscle disuse. / Protein arginine methyltransferase 1 (PRMT1), PRMT4 (also known as co-activator-associated arginine methyltransferase 1; CARM1), and PRMT5 are critical components of a diverse set of intracellular functions. Despite the limited number of studies in skeletal muscle, evidence strongly suggests that these enzymes are important players in the regulation of phenotypic plasticity. However, their role in disuse-induced muscle remodelling is unknown. Thus, we sought to determine whether denervation-induced muscle disuse alters PRMT expression and activity in skeletal muscle within the context of early signaling events that precede muscle atrophy. Mice were subjected to 6, 12, 24, 72, or 168 hours of unilateral hindlimb denervation. The contralateral limb served as an internal control. Muscle mass decreased by ~30% following 168 hours of disuse. Prior to atrophy, the expression of muscle RING finger 1 and muscle atrophy F-box were significantly elevated. The expression and activities of PRMT1, CARM1, and PRMT5 displayed differential responses to muscle disuse. Peroxisome proliferator-activated receptor-γ coactivator-1α, AMP-activated protein kinase (AMPK), and p38 mitogen-activated protein kinase expression and activation were altered as early as 6 hours after denervation, suggesting that adaptations in these molecules are among the earliest signals that precede atrophy. AMPK activation also predicted changes in PRMT expression and function following disuse. Our study indicates that PRMTs are important for the mechanisms that precede, and initiate muscle remodelling in response to neurogenic disuse. / Thesis / Master of Science (MSc) / Skeletal muscle is a plastic tissue that is capable of adapting to various physiological demands. Previous work suggests that protein arginine methyltransferases (PRMTs) are important players in the regulation of skeletal muscle remodelling. However, their role in disuse-induced muscle plasticity is unknown. Therefore, the purpose of this study was to investigate the role of PRMTs within the context of early, upstream signaling pathways that mediate disuse-evoked muscle remodelling. We found differential responses of the PRMTs to muscle denervation, suggesting a unique sensitivity to, or regulation by, potential upstream signaling pathways. AMP-activated protein kinase (AMPK) was among the molecules that experienced a rapid change in activity following disuse. These alterations in AMPK predicted many of the modifications in PRMT biology during inactivity, suggesting that PRMTs factor into the molecular mechanisms that precede neurogenic muscle atrophy. This study expands our understanding of the role of PRMTs in regulating skeletal muscle plasticity.
68

Regulation of the Histone Methyltransferase Kmt5/Set9 and its Role in Genome Stability

Lott, Nikole T. 26 June 2012 (has links)
No description available.
69

PRMT Biology During Acute Exercise

vanLieshout, Tiffany January 2017 (has links)
Protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1; CARM1), and -5 catalyze the methylation of arginine residues on target proteins. In turn, these marked proteins mediate a variety of biological functions. By regulating molecules that are critical to the remodelling of skeletal muscle phenotype, PRMTs may influence skeletal muscle plasticity. Our study tests the hypothesis that the intracellular signals required for muscle adaptation to exercise will be associated with the induction of PRMT expression and activity. C57BL/6 mice were assigned to one of three experimental groups: sedentary (SED), acute bout of exercise (0PE), or acute exercise followed by 3 hours of recovery (3PE). The mice in the exercise groups performed a single bout of treadmill running at 15 m/min for 90 minutes. We observed that PRMT gene expression and global enzyme activity are muscle- specific, generally being higher in slow, oxidative muscle, as compared to faster, more glycolytic tissue. Despite the activation of canonical exercise-induced signalling involving AMPK and PGC-1α, PRMT expression and activity at the whole muscle level were unchanged. However, subcellular analysis revealed the exercise-evoked myonuclear translocation of PRMT1 prior to the nuclear translocation of PGC-1α, which colocalizes the proteins within the organelle after exercise. Acute physical activity also augmented the targeted methyltransferase activities of CARM1, PRMT1, and -5 in the myonuclear compartment, suggesting that PRMT-mediated histone arginine methylation is an integral part of the early signals that drive skeletal muscle plasticity. In summary, our data supports the emergence of PRMTs as important players in the regulation of skeletal muscle plasticity. / Thesis / Master of Science (MSc) / Skeletal muscle is a plastic tissue that can adapt to various physiological demands. Previous work suggests that protein arginine methyltransferases (PRMTs) are important in the regulation of skeletal muscle remodeling. However, their role in exercise-induced skeletal muscle plasticity is unknown. Therefore, the purpose of this study was to investigate the association between the intracellular signals required for muscle adaption and various metrics of PRMT biology. Our data demonstrate that PRMTs exhibit muscle-specific expression and function in mice. The movement of PRMT1 into myonuclei increased following exercise, while the specific methylation status of PRMT targets were also elevated. Overall, our data suggests that muscle-specific PRMT expression may be important for the determination and/or maintenance of different fiber type characteristics. Moreover, distinct PRMT cellular localization and methyltransferase activity may be key signals that contribute to skeletal muscle phenotypic plasticity.
70

CHARACTERIZING PROTEIN ARGININE METHYLTRANSFERASE EXPRESSION AND ACTIVITY DURING MYOGENESIS / CHARACTERIZING PRMT BIOLOGY DURING MYOGENESIS

Shen, Nicole January 2017 (has links)
Despite the emerging importance of protein arginine methyltransferases (PRMTs) in regulating skeletal muscle plasticity, the biology of these enzymes during muscle development remains poorly understood. Therefore, our purpose was to investigate PRMT1, -4, and -5 expression and function in skeletal muscle cells during the phenotypic remodeling elicited by myogenesis. C2C12 muscle cell maturation, assessed during the myoblast stage, and during days 1, 3, 5, and 7 of differentiation, was employed as an in vitro model of myogenesis. We observed PRMT-specific patterns of expression and activity during myogenesis. PRMT4 and -5 gene expression was unchanged, while PRMT1 mRNA and protein content were significantly induced. Cellular monomethylarginines and symmetric dimethylarginines, indicative of global and type II PRMT activities, respectively, remained steady during development, while type I PRMT activity indicator asymmetric dimethylarginines increased through myogenesis. Histone 4 arginine 3 (H4R3) and H3R17 contents were elevated coincident with the myonuclear accumulation of PRMT1 and -4. Collectively, this suggests that PRMTs are methyl donors throughout myogenesis and demonstrate specificity for their protein targets. Cells were then treated with TC-E 5003 (TC-E), a selective inhibitor of PRMT1 in order to specifically examine the enzymes role during myogenic differentiation. TC-E treated cells exhibited decrements in muscle differentiation, which were consistent with attenuated mitochondrial biogenesis and respiratory function. In summary, this study increases our understanding of PRMT1, -4, and -5 biology during the plasticity of skeletal muscle development. Our results provide evidence for a role of PRMT1, via a mitochondrially-mediated mechanism, in driving the muscle differentiation program. / Thesis / Master of Science (MSc) / Protein arginine methyltransferases (PRMTs) are responsible for many important functions in skeletal muscle. However, significant knowledge gaps exist with respect to PRMT expression and activity during conditions of muscle remodeling. Therefore, the purpose of this Thesis was to investigate PRMT biology throughout skeletal muscle development. Mouse muscle cells were employed to examine characteristics of PRMT1, -4, and -5 at numerous timepoints during myogenesis. PRMTs exhibited distinct patterns of gene expression and activity during muscle maturation. A PRMT1 inhibitor (TC-E) was utilized to investigate the role of this enzyme during myogenesis. Muscle differentiation was impaired in TC-E-treated cells, which coincided with reduced mitochondrial biogenesis and respiratory function. Altogether, these results suggest a PRMT-specific pattern of expression and activity during myogenesis. Furthermore, PRMT1 plays a crucial role in skeletal muscle differentiation via a mitochondrially-mediated mechanism. Our study provides a more comprehensive view on the role of PRMTs in governing skeletal muscle plasticity.

Page generated in 0.0984 seconds