• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 16
  • 16
  • 14
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Similarity Search in Continuous Data with Evolving Distance Metric

Zhang, Hauyi 12 December 2018 (has links)
Similarity search is a task fundamental to many machine learning and data analytics applications, where distance metric learning plays an important role. However, since modern online applications continuously produce objects with new characteristics which tend to change over time, state-of-the-art similarity search using distance metric learning methods tends to fail when deployed in such applications without taking the change into consideration. In this work, we propose a Distance Metric Learning-based Continuous Similarity Search approach (CSS for short) to account for the dynamic nature of such data. CSS system adopts an online metric learning model to achieve distance metric evolving to adapt the dynamic nature of continuous data without large latency. To improve the accuracy of online metric learning model, a compact labeled dataset which is representative of the updated data is dynamically updated. Also, to accelerate similarity search, CSS includes an online maintained Locality Sensitive Hashing index to accelerate the similarity search. One, our labeled data update strategy progressively enriches the labeled data to assure continued representativeness, yet without excessively growing its size to ensure that the computation costs of metric learning remain bounded. Two, our continuous distance metric learning strategy ensures that each update only requires one linear time k-NN search in contrast to the cubic time complexity of relearning the distance metric from scratch. Three, our LSH update mechanism leverages our theoretical insight that the LSH built based on the original distance metric is equally effective in supporting similarity search using the new distance metric as long as the transform matrix learned for the new distance metric is reversible. This important observation empowers CSS to avoid the modification of LSH in most cases. Our experimental study using real-world public datasets and large synthetic datasets confirms the effectiveness of CSS in improving the accuracy of classification and information retrieval tasks. Also, CSS achieves 3 orders of magnitude speedup of our incremental distance metric learning strategy (and its three underlying components) over the state-of-art methods.
2

Large scale optimization methods for metric and kernel learning

Jain, Prateek 06 November 2014 (has links)
A large number of machine learning algorithms are critically dependent on the underlying distance/metric/similarity function. Learning an appropriate distance function is therefore crucial to the success of many methods. The class of distance functions that can be learned accurately is characterized by the amount and type of supervision available to the particular application. In this thesis, we explore a variety of such distance learning problems using different amounts/types of supervision and provide efficient and scalable algorithms to learn appropriate distance functions for each of these problems. First, we propose a generic regularized framework for Mahalanobis metric learning and prove that for a wide variety of regularization functions, metric learning can be used for efficiently learning a kernel function incorporating the available side-information. Furthermore, we provide a method for fast nearest neighbor search using the learned distance/kernel function. We show that a variety of existing metric learning methods are special cases of our general framework. Hence, our framework also provides a kernelization scheme and fast similarity search scheme for such methods. Second, we consider a variation of our standard metric learning framework where the side-information is incremental, streaming and cannot be stored. For this problem, we provide an efficient online metric learning algorithm that compares favorably to existing methods both theoretically and empirically. Next, we consider a contrasting scenario where the amount of supervision being provided is extremely small compared to the number of training points. For this problem, we consider two different modeling assumptions: 1) data lies on a low-dimensional linear subspace, 2) data lies on a low-dimensional non-linear manifold. The first assumption, in particular, leads to the problem of matrix rank minimization over polyhedral sets, which is a problem of immense interest in numerous fields including optimization, machine learning, computer vision, and control theory. We propose a novel online learning based optimization method for the rank minimization problem and provide provable approximation guarantees for it. The second assumption leads to our geometry-aware metric/kernel learning formulation, where we jointly model the metric/kernel over the data along with the underlying manifold. We provide an efficient alternating minimization algorithm for this problem and demonstrate its wide applicability and effectiveness by applying it to various machine learning tasks such as semi-supervised classification, colored dimensionality reduction, manifold alignment etc. Finally, we consider the task of learning distance functions under no supervision, which we cast as a problem of learning disparate clusterings of the data. To this end, we propose a discriminative approach and a generative model based approach and we provide efficient algorithms with convergence guarantees for both the approaches. / text
3

Sparse distance metric learning

Choy, Tze Leung January 2014 (has links)
A good distance metric can improve the accuracy of a nearest neighbour classifier. Xing et al. (2002) proposed distance metric learning to find a linear transformation of the data so that observations of different classes are better separated. For high-dimensional problems where many un-informative variables are present, it is attractive to select a sparse distance metric, both to increase predictive accuracy but also to aid interpretation of the result. In this thesis, we investigate three different types of sparsity assumption for distance metric learning and show that sparse recovery is possible under each type of sparsity assumption with an appropriate choice of L1-type penalty. We show that a lasso penalty promotes learning a transformation matrix having lots of zero entries, a group lasso penalty recovers a transformation matrix having zero rows/columns and a trace norm penalty allows us to learn a low rank transformation matrix. The regularization allows us to consider a large number of covariates and we apply the technique to an expanded set of basis called rule ensemble to allow for a more flexible fit. Finally, we illustrate an application of the metric learning problem via a document retrieval example and discuss how similarity-based information can be applied to learn a classifier.
4

Adaptive Similarity Measures for Material Identification in Hyperspectral Imagery

Bue, Brian 16 September 2013 (has links)
Remotely-sensed hyperspectral imagery has become one the most advanced tools for analyzing the processes that shape the Earth and other planets. Effective, rapid analysis of high-volume, high-dimensional hyperspectral image data sets demands efficient, automated techniques to identify signatures of known materials in such imagery. In this thesis, we develop a framework for automatic material identification in hyperspectral imagery using adaptive similarity measures. We frame the material identification problem as a multiclass similarity-based classification problem, where our goal is to predict material labels for unlabeled target spectra based upon their similarities to source spectra with known material labels. As differences in capture conditions affect the spectral representations of materials, we divide the material identification problem into intra-domain (i.e., source and target spectra captured under identical conditions) and inter-domain (i.e., source and target spectra captured under different conditions) settings. The first component of this thesis develops adaptive similarity measures for intra-domain settings that measure the relevance of spectral features to the given classification task using small amounts of labeled data. We propose a technique based on multiclass Linear Discriminant Analysis (LDA) that combines several distinct similarity measures into a single hybrid measure capturing the strengths of each of the individual measures. We also provide a comparative survey of techniques for low-rank Mahalanobis metric learning, and demonstrate that regularized LDA yields competitive results to the state-of-the-art, at substantially lower computational cost. The second component of this thesis shifts the focus to inter-domain settings, and proposes a multiclass domain adaptation framework that reconciles systematic differences between spectra captured under similar, but not identical, conditions. Our framework computes a similarity-based mapping that captures structured, relative relationships between classes shared between source and target domains, allowing us apply a classifier trained using labeled source spectra to classify target spectra. We demonstrate improved domain adaptation accuracy in comparison to recently-proposed multitask learning and manifold alignment techniques in several case studies involving state-of-the-art synthetic and real-world hyperspectral imagery.
5

A scalable metric learning based voting method for expression recognition

Wan, Shaohua 09 October 2013 (has links)
In this research work, we propose a facial expression classification method using metric learning-based k-nearest neighbor voting. To achieve accurate classification of a facial expression from frontal face images, we first learn a distance metric structure from training data that characterizes the feature space pattern, then use this metric to retrieve the nearest neighbors from the training dataset, and finally output the classification decision accordingly. An expression is represented as a fusion of face shape and texture. This representation is based on registering a face image with a landmarking shape model and extracting Gabor features from local patches around landmarks. This type of representation achieves robustness and effectiveness by using an ensemble of local patch feature detectors at a global shape level. A naive implementation of the metric learning-based k-nearest neighbor would incur a time complexity proportional to the size of the training dataset, which precludes this method being used with enormous datasets. To scale to potential larger databases, a similar approach to that in [24] is used to achieve an approximate yet efficient ML-based kNN voting based on Locality Sensitive Hashing (LSH). A query example is directly hashed to the bucket of a pre-computed hash table where candidate nearest neighbors can be found, and there is no need to search the entire database for nearest neighbors. Experimental results on the Cohn-Kanade database and the Moving Faces and People database show that both ML-based kNN voting and its LSH approximation outperform the state-of-the-art, demonstrating the superiority and scalability of our method. / text
6

Multi-modal similarity learning for 3D deformable registration of medical images / Titre français non fourni

Michel, Fabrice 04 October 2013 (has links)
Alors que la perspective de la fusion d’images médicales capturées par des systèmes d’imageries de type différent est largement contemplée, la mise en pratique est toujours victime d’un obstacle théorique : la définition d’une mesure de similarité entre les images. Des efforts dans le domaine ont rencontrés un certain succès pour certains types d’images, cependant la définition d’un critère de similarité entre les images quelle que soit leur origine et un des plus gros défis en recalage d’images déformables. Dans cette thèse, nous avons décidé de développer une approche générique pour la comparaison de deux types de modalités donnés. Les récentes avancées en apprentissage statistique (Machine Learning) nous ont permis de développer des solutions innovantes pour la résolution de ce problème complexe. Pour appréhender le problème de la comparaison de données incommensurables, nous avons choisi de le regarder comme un problème de plongement de données : chacun des jeux de données est plongé dans un espace commun dans lequel les comparaisons sont possibles. A ces fins, nous avons exploré la projection d’un espace de données image sur l’espace de données lié à la seconde image et aussi la projection des deux espaces de données dans un troisième espace commun dans lequel les calculs sont conduits. Ceci a été entrepris grâce à l’étude des correspondances entre les images dans une base de données images pré-alignées. Dans la poursuite de ces buts, de nouvelles méthodes ont été développées que ce soit pour la régression d’images ou pour l’apprentissage de métrique multimodale. Les similarités apprises résultantes sont alors incorporées dans une méthode plus globale de recalage basée sur l’optimisation discrète qui diminue le besoin d’un critère différentiable pour la recherche de solution. Enfin nous explorons une méthode qui permet d’éviter le besoin d’une base de données pré-alignées en demandant seulement des données annotées (segmentations) par un spécialiste. De nombreuses expériences sont conduites sur deux bases de données complexes (Images d’IRM pré-alignées et Images TEP/Scanner) dans le but de justifier les directions prises par nos approches. / Even though the prospect of fusing images issued by different medical imagery systems is highly contemplated, the practical instantiation of it is subject to a theoretical hurdle: the definition of a similarity between images. Efforts in this field have proved successful for select pairs of images; however defining a suitable similarity between images regardless of their origin is one of the biggest challenges in deformable registration. In this thesis, we chose to develop generic approaches that allow the comparison of any two given modality. The recent advances in Machine Learning permitted us to provide innovative solutions to this very challenging problem. To tackle the problem of comparing incommensurable data we chose to view it as a data embedding problem where one embeds all the data in a common space in which comparison is possible. To this end, we explored the projection of one image space onto the image space of the other as well as the projection of both image spaces onto a common image space in which the comparison calculations are conducted. This was done by the study of the correspondences between image features in a pre-aligned dataset. In the pursuit of these goals, new methods for image regression as well as multi-modal metric learning methods were developed. The resulting learned similarities are then incorporated into a discrete optimization framework that mitigates the need for a differentiable criterion. Lastly we investigate on a new method that discards the constraint of a database of images that are pre-aligned, only requiring data annotated (segmented) by a physician. Experiments are conducted on two challenging medical images data-sets (Pre-Aligned MRI images and PET/CT images) to justify the benefits of our approach.
7

Distance metric learning for image and webpage comparison / Apprentissage de distance pour la comparaison d'images et de pages Web

Law, Marc Teva 20 January 2015 (has links)
Cette thèse se focalise sur l'apprentissage de distance pour la comparaison d'images ou de pages Web. Les distances (ou métriques) sont exploitées dans divers contextes de l'apprentissage automatique et de la vision artificielle tels que la recherche des k plus proches voisins, le partitionnement, les machines à vecteurs de support, la recherche d'information/images, la visualisation etc. Nous nous intéressons dans cette thèse à l'apprentissage de fonction de distance paramétrée par une matrice symétrique semi-définie positive. Ce modèle, appelé (par abus) apprentissage de distance de Mahalanobis, consiste à apprendre une transformation linéaire des données telle que la distance euclidienne dans l'espace projeté appris satisfasse les contraintes d'apprentissage.Premièrement, nous proposons une méthode basée sur la comparaison de distances relatives qui prend en compte des relations riches entre les données, et exploite des similarités entre quadruplets d'exemples. Nous appliquons cette méthode aux attributs relatifs et à la classification hiérarchique d'images.Deuxièmement, nous proposons une nouvelle méthode de régularisation qui permet de contrôler le rang de la matrice apprise, limitant ainsi le nombre de paramètres indépendants appris et le sur-apprentissage. Nous montrons l'intérêt de notre méthode sur des bases synthétiques et réelles d'identification de visage.Enfin, nous proposons une nouvelle méthode de détection automatique de changement dans les pages Web, dans un contexte d'archivage. Pour cela, nous utilisons les relations de distance temporelle entre différentes versions d'une même page Web. La métrique apprise de façon entièrement non supervisée détecte les régions d'intérêt de la page et ignore le contenu non informatif tel que les menus et publicités. Nous montrons l'intérêt de la méthode sur différents sites Web. / This thesis focuses on distance metric learning for image and webpage comparison. Distance metrics are used in many machine learning and computer vision contexts such as k-nearest neighbors classification, clustering, support vector machine, information/image retrieval, visualization etc. In this thesis, we focus on Mahalanobis-like distance metric learning where the learned model is parametered by a symmetric positive semidefinite matrix. It learns a linear tranformation such that the Euclidean distance in the induced projected space satisfies learning constraints.First, we propose a method based on comparison between relative distances that takes rich relations between data into account, and exploits similarities between quadruplets of examples. We apply this method on relative attributes and hierarchical image classification. Second, we propose a new regularization method that controls the rank of the learned matrix, limiting the number of independent parameters and overfitting. We show the interest of our method on synthetic and real-world recognition datasets. Eventually, we propose a novel Webpage change detection framework in a context of archiving. For this purpose, we use temporal distance relations between different versions of a same Webpage. The metric learned in a totally unsupervised way detects important regions and ignores unimportant content such as menus and advertisements. We show the interest of our method on different Websites.
8

Common-Near-Neighbor Information in Discriminative Spaces for Human Re-identification / 人物照合のための識別空間中での共通近傍情報

Li, Wei 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18482号 / 情博第533号 / 新制||情||94(附属図書館) / 31360 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 美濃 導彦, 教授 河原 達也, 教授 中村 裕一 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
9

Geometry-Aware Learning Algorithms for Histogram Data Using Adaptive Metric Embeddings and Kernel Functions / 距離の適応埋込みとカーネル関数を用いたヒストグラムデータからの幾何認識学習アルゴリズム

Le, Thanh Tam 25 January 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19417号 / 情博第596号 / 新制||情||104(附属図書館) / 32442 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 山本 章博, 教授 黒橋 禎夫, 教授 鹿島 久嗣, 准教授 Cuturi Marco / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
10

Self-supervised Representation Learning in Computer Vision and Reinforcement Learning

Ermolov, Aleksandr 06 December 2022 (has links)
This work is devoted to self-supervised representation learning (SSL). We consider both contrastive and non-contrastive methods and present a new loss function for SSL based on feature whitening. Our solution is conceptually simple and competitive with other methods. Self-supervised representations are beneficial for most areas of deep learning, and reinforcement learning is of particular interest because SSL can compensate for the sparsity of the training signal. We present two methods from this area. The first tackles the partial observability providing the agent with a history, represented with temporal alignment, and improves performance in most Atari environments. The second addresses the exploration problem. The method employs a world model of the SSL latent space, and the prediction error of this model indicates novel states required to explore. It shows strong performance on exploration-hard benchmarks, especially on the notorious Montezuma's Revenge. Finally, we consider the metric learning problem, which has much in common with SSL approaches. We present a new method based on hyperbolic embeddings, vision transformers and contrastive loss. We demonstrate the advantage of hyperbolic space over the widely used Euclidean space for metric learning. The method outperforms the current state-of-the-art by a significant margin.

Page generated in 0.1077 seconds