21 |
Identification of denitrifying microbial communities in activated sludge exposed to external carbon sourcesGinige, Maneesha Prasaad Unknown Date (has links)
The aim of this thesis was to identify the denitrifying microbial communities in activated sludge from full-scale treatment plants and from small-scale reactors exposed to acetate or methanol as external carbon sources. Biological denitrification is currently the most widely used, sustainable and cost-effective process to remove nitrogen from wastewater. Increasingly strict effluent discharge standards are posing significant challenges to plant operators to reduce effluent NO3--N concentrations to levels as low as 2-3 mg L-1 or even lower. The lack of sufficient influent carbon in many municipal wastewater treatment plants makes it very difficult to achieve such low NO3--N concentrations in the effluent. An effective solution to the problem is to introduce additional external carbon sources to enhance denitrification. The selection of external carbon sources is not purely based on costs but is also dependent on the possible microbial transformations that these carbon sources may bring about in activated sludge. The most common carbon source used is methanol due to its low cost, but it has been found to cause long delays until an improvement in denitrification performance is observed. On the other hand, acetate has been found to improve denitrification almost instantaneously when added, but it has a significantly higher cost. In this study, methanol and acetate utilising denitrifiers were investigated in activated sludge with and without enrichment in laboratory scale bioreactors. The relevant denitrifiers were identified and evaluated in situ using culture independent methods particularly stable isotope probing (SIP), 16S rDNA cloning, fluorescence in situ hybridisation (FISH) and microautoradiography (MAR). Activated sludge collected from a biological nutrient removal plant exhibiting good denitrification was enriched in an anoxically-operated sequencing batch reactor (SBR) by feeding methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was operated over a duration of 7 months and the SBR denitrification rate improved from 0.02 mg NO3--N mg mixed liquor volatile suspended solids (MLVSS)-1 h-1 to a steady-state value of 0.06 mg NO3-N mg MLVSS-1 h-1. At steady state operation the enriched biomass was subjected to SIP with 13C-methanol to biomark the denitrifiers capable of utilising methanol under anoxic conditions. The separated 12C-DNA and 13C-DNA fractions from the SIP experiment were individually subjected to full cycle rRNA analysis. The dominant 16S rRNA gene phylotype (Group-A clones) in the 13C-library was closely related to the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96-97% sequence identities), while the most abundant clone groups in the 12C-library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes were designed for FISH to target the Group-A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes on SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, no correlation was found between denitrification rate and the relative abundances of the well known denitrifying genera Hyphomicrobium and Paracoccus nor the Saprospiraceae-clones visualised by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [14C] methanol uptake in the enriched biomass. As observed in full-scale operations, the methanol-fed SBR experienced a lag period of several weeks before denitrification performance increased. Using FISH quantification, it was shown that this coincided with the lag phase in the growth of the DEN67-targeted denitrifying population. It was therefore concluded that the Methylophilales bacteria dominant in our SBR system are likely to be important in full-scale methanol-fed denitrifying sludges. The acetate utilising microbial consortium in activated sludge was investigated without prior enrichment using stable isotope probing (SIP). 13C-acetate was used in SIP to biomark the DNA of the denitrifiers. The extracted 13C-DNA fraction was subjected to a full cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C-library were closely related to bacterial families Comamonadaceae and Rhodocyclaceae of class Betaproteobacteria (96-97% sequence identities). Seven oligonucleotide probes (DEN444, DEN220, DEN581, DEN441, DEN124, DEN220a and DEN1454) for use in FISH was designed to specifically target the identified phylotypes. Application of these probes on the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated over a duration of 16 days indicated a strong correlation between the level of CFDSBR denitrification and relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH combined with microautoradiography (FISH-MAR) further confirmed that the DEN581- and DEN124-targeted cells dominating the CFDSBR were capable of taking up [14C] acetate under anoxic conditions. The initial occurrence of the DEN444- and DEN1454-targeted bacteria and the final dominance of DEN581- and DEN124-targeted bacteria in the CFDSBR community were likely related to the changing in-reactor nitrite concentrations during the first few days of CFDSBR operation. Hence, the DEN444- and DEN1454-targeted bacteria were hypothesised to have low affinities for nitrite while DEN124- and DEN581-targeted bacteria have higher nitrite affinities. However, it was clear that all probe-targeted bacteria were denitrifiers capable of utilising acetate as a carbon source. The rapid increase in numbers of the probe-targeted organisms positively correlates with the immediate increase in denitrification rates. The rapid response and community shifts observed when acetate was used to enhance denitrification suggest that an intermittent application of acetate is quite effective to temporarily enhance the denitrification capacity of a treatment plant. However, the importance of a bacterial impact assessment of activated sludge subjected to intermittent acetate supplementation is recommended prior to the wide use of acetate in the wastewater industry. The acetate utilising denitrifying microbial communities investigated in the previous chapter were characterised according to their eco-physiological properties using the r- and K-selection criteria. The electron donor (acetate) and acceptor (nitrite) affinities of these probe-identified denitrifiers were used as traits for this characterisation. The substrate to microorganism (S/M) ratio was manipulated to provide high and low substrate concentrations in the reactor to create conditions favourable for r- and K-strategists, respectively. Two factors, namely feeding regimes and sludge retention times, were studied to achieve the desired S/M ratios and enable r/K characterisation. The high substrate affinities and high specific growth rates of two probe-identified denitrifiers (DEN124 and DEN581) did not enable resolution of these two organisms with the feeding regimes used in this study. However, the application of different sludge retention times as a control strategy to maintain constant high and low in-reactor S/M ratios enabled characterisation of the two probe-targeted denitrifiers DEN124 and DEN581 as K- and r-strategists, respectively. The in-reactor S/M ratios applied in this study did not facilitate the characterisation of populations targeted by probes DEN444 and DEN1454. The minor fluctuations of the S/M ratios during a cycle in the SBR operation was considered as a drawback, but conclusive results could still be obtained from the study. A chemostat reactor operation with constant loading and variable flow rates is suggested as an alternative. Conclusively, this study was able to identify specific groups of denitrifying microorganisms in activated sludge when exposed to acetate and methanol. Unlike most previous studies, which relied on culture dependent methods, this study adopted a pure culture independent approach to identify microorganisms in relation to their function, i.e. denitrification. Moreover, acetate denitrifiers were in situ characterised based on eco-physiological properties. The identification of denitrifying communities in this study has paved the way to a larger research project on the optimisation of denitrification processes with external acetate, methanol and other carbon supplements. As such, this study has contributed significantly to the understanding of the denitrification processes by linking process data with microbial investigations.
|
22 |
Identification of denitrifying microbial communities in activated sludge exposed to external carbon sourcesGinige, Maneesha Prasaad Unknown Date (has links)
The aim of this thesis was to identify the denitrifying microbial communities in activated sludge from full-scale treatment plants and from small-scale reactors exposed to acetate or methanol as external carbon sources. Biological denitrification is currently the most widely used, sustainable and cost-effective process to remove nitrogen from wastewater. Increasingly strict effluent discharge standards are posing significant challenges to plant operators to reduce effluent NO3--N concentrations to levels as low as 2-3 mg L-1 or even lower. The lack of sufficient influent carbon in many municipal wastewater treatment plants makes it very difficult to achieve such low NO3--N concentrations in the effluent. An effective solution to the problem is to introduce additional external carbon sources to enhance denitrification. The selection of external carbon sources is not purely based on costs but is also dependent on the possible microbial transformations that these carbon sources may bring about in activated sludge. The most common carbon source used is methanol due to its low cost, but it has been found to cause long delays until an improvement in denitrification performance is observed. On the other hand, acetate has been found to improve denitrification almost instantaneously when added, but it has a significantly higher cost. In this study, methanol and acetate utilising denitrifiers were investigated in activated sludge with and without enrichment in laboratory scale bioreactors. The relevant denitrifiers were identified and evaluated in situ using culture independent methods particularly stable isotope probing (SIP), 16S rDNA cloning, fluorescence in situ hybridisation (FISH) and microautoradiography (MAR). Activated sludge collected from a biological nutrient removal plant exhibiting good denitrification was enriched in an anoxically-operated sequencing batch reactor (SBR) by feeding methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was operated over a duration of 7 months and the SBR denitrification rate improved from 0.02 mg NO3--N mg mixed liquor volatile suspended solids (MLVSS)-1 h-1 to a steady-state value of 0.06 mg NO3-N mg MLVSS-1 h-1. At steady state operation the enriched biomass was subjected to SIP with 13C-methanol to biomark the denitrifiers capable of utilising methanol under anoxic conditions. The separated 12C-DNA and 13C-DNA fractions from the SIP experiment were individually subjected to full cycle rRNA analysis. The dominant 16S rRNA gene phylotype (Group-A clones) in the 13C-library was closely related to the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96-97% sequence identities), while the most abundant clone groups in the 12C-library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes were designed for FISH to target the Group-A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes on SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, no correlation was found between denitrification rate and the relative abundances of the well known denitrifying genera Hyphomicrobium and Paracoccus nor the Saprospiraceae-clones visualised by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [14C] methanol uptake in the enriched biomass. As observed in full-scale operations, the methanol-fed SBR experienced a lag period of several weeks before denitrification performance increased. Using FISH quantification, it was shown that this coincided with the lag phase in the growth of the DEN67-targeted denitrifying population. It was therefore concluded that the Methylophilales bacteria dominant in our SBR system are likely to be important in full-scale methanol-fed denitrifying sludges. The acetate utilising microbial consortium in activated sludge was investigated without prior enrichment using stable isotope probing (SIP). 13C-acetate was used in SIP to biomark the DNA of the denitrifiers. The extracted 13C-DNA fraction was subjected to a full cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C-library were closely related to bacterial families Comamonadaceae and Rhodocyclaceae of class Betaproteobacteria (96-97% sequence identities). Seven oligonucleotide probes (DEN444, DEN220, DEN581, DEN441, DEN124, DEN220a and DEN1454) for use in FISH was designed to specifically target the identified phylotypes. Application of these probes on the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated over a duration of 16 days indicated a strong correlation between the level of CFDSBR denitrification and relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH combined with microautoradiography (FISH-MAR) further confirmed that the DEN581- and DEN124-targeted cells dominating the CFDSBR were capable of taking up [14C] acetate under anoxic conditions. The initial occurrence of the DEN444- and DEN1454-targeted bacteria and the final dominance of DEN581- and DEN124-targeted bacteria in the CFDSBR community were likely related to the changing in-reactor nitrite concentrations during the first few days of CFDSBR operation. Hence, the DEN444- and DEN1454-targeted bacteria were hypothesised to have low affinities for nitrite while DEN124- and DEN581-targeted bacteria have higher nitrite affinities. However, it was clear that all probe-targeted bacteria were denitrifiers capable of utilising acetate as a carbon source. The rapid increase in numbers of the probe-targeted organisms positively correlates with the immediate increase in denitrification rates. The rapid response and community shifts observed when acetate was used to enhance denitrification suggest that an intermittent application of acetate is quite effective to temporarily enhance the denitrification capacity of a treatment plant. However, the importance of a bacterial impact assessment of activated sludge subjected to intermittent acetate supplementation is recommended prior to the wide use of acetate in the wastewater industry. The acetate utilising denitrifying microbial communities investigated in the previous chapter were characterised according to their eco-physiological properties using the r- and K-selection criteria. The electron donor (acetate) and acceptor (nitrite) affinities of these probe-identified denitrifiers were used as traits for this characterisation. The substrate to microorganism (S/M) ratio was manipulated to provide high and low substrate concentrations in the reactor to create conditions favourable for r- and K-strategists, respectively. Two factors, namely feeding regimes and sludge retention times, were studied to achieve the desired S/M ratios and enable r/K characterisation. The high substrate affinities and high specific growth rates of two probe-identified denitrifiers (DEN124 and DEN581) did not enable resolution of these two organisms with the feeding regimes used in this study. However, the application of different sludge retention times as a control strategy to maintain constant high and low in-reactor S/M ratios enabled characterisation of the two probe-targeted denitrifiers DEN124 and DEN581 as K- and r-strategists, respectively. The in-reactor S/M ratios applied in this study did not facilitate the characterisation of populations targeted by probes DEN444 and DEN1454. The minor fluctuations of the S/M ratios during a cycle in the SBR operation was considered as a drawback, but conclusive results could still be obtained from the study. A chemostat reactor operation with constant loading and variable flow rates is suggested as an alternative. Conclusively, this study was able to identify specific groups of denitrifying microorganisms in activated sludge when exposed to acetate and methanol. Unlike most previous studies, which relied on culture dependent methods, this study adopted a pure culture independent approach to identify microorganisms in relation to their function, i.e. denitrification. Moreover, acetate denitrifiers were in situ characterised based on eco-physiological properties. The identification of denitrifying communities in this study has paved the way to a larger research project on the optimisation of denitrification processes with external acetate, methanol and other carbon supplements. As such, this study has contributed significantly to the understanding of the denitrification processes by linking process data with microbial investigations.
|
23 |
Identification of denitrifying microbial communities in activated sludge exposed to external carbon sourcesGinige, Maneesha Prasaad Unknown Date (has links)
The aim of this thesis was to identify the denitrifying microbial communities in activated sludge from full-scale treatment plants and from small-scale reactors exposed to acetate or methanol as external carbon sources. Biological denitrification is currently the most widely used, sustainable and cost-effective process to remove nitrogen from wastewater. Increasingly strict effluent discharge standards are posing significant challenges to plant operators to reduce effluent NO3--N concentrations to levels as low as 2-3 mg L-1 or even lower. The lack of sufficient influent carbon in many municipal wastewater treatment plants makes it very difficult to achieve such low NO3--N concentrations in the effluent. An effective solution to the problem is to introduce additional external carbon sources to enhance denitrification. The selection of external carbon sources is not purely based on costs but is also dependent on the possible microbial transformations that these carbon sources may bring about in activated sludge. The most common carbon source used is methanol due to its low cost, but it has been found to cause long delays until an improvement in denitrification performance is observed. On the other hand, acetate has been found to improve denitrification almost instantaneously when added, but it has a significantly higher cost. In this study, methanol and acetate utilising denitrifiers were investigated in activated sludge with and without enrichment in laboratory scale bioreactors. The relevant denitrifiers were identified and evaluated in situ using culture independent methods particularly stable isotope probing (SIP), 16S rDNA cloning, fluorescence in situ hybridisation (FISH) and microautoradiography (MAR). Activated sludge collected from a biological nutrient removal plant exhibiting good denitrification was enriched in an anoxically-operated sequencing batch reactor (SBR) by feeding methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was operated over a duration of 7 months and the SBR denitrification rate improved from 0.02 mg NO3--N mg mixed liquor volatile suspended solids (MLVSS)-1 h-1 to a steady-state value of 0.06 mg NO3-N mg MLVSS-1 h-1. At steady state operation the enriched biomass was subjected to SIP with 13C-methanol to biomark the denitrifiers capable of utilising methanol under anoxic conditions. The separated 12C-DNA and 13C-DNA fractions from the SIP experiment were individually subjected to full cycle rRNA analysis. The dominant 16S rRNA gene phylotype (Group-A clones) in the 13C-library was closely related to the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96-97% sequence identities), while the most abundant clone groups in the 12C-library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes were designed for FISH to target the Group-A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes on SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, no correlation was found between denitrification rate and the relative abundances of the well known denitrifying genera Hyphomicrobium and Paracoccus nor the Saprospiraceae-clones visualised by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [14C] methanol uptake in the enriched biomass. As observed in full-scale operations, the methanol-fed SBR experienced a lag period of several weeks before denitrification performance increased. Using FISH quantification, it was shown that this coincided with the lag phase in the growth of the DEN67-targeted denitrifying population. It was therefore concluded that the Methylophilales bacteria dominant in our SBR system are likely to be important in full-scale methanol-fed denitrifying sludges. The acetate utilising microbial consortium in activated sludge was investigated without prior enrichment using stable isotope probing (SIP). 13C-acetate was used in SIP to biomark the DNA of the denitrifiers. The extracted 13C-DNA fraction was subjected to a full cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C-library were closely related to bacterial families Comamonadaceae and Rhodocyclaceae of class Betaproteobacteria (96-97% sequence identities). Seven oligonucleotide probes (DEN444, DEN220, DEN581, DEN441, DEN124, DEN220a and DEN1454) for use in FISH was designed to specifically target the identified phylotypes. Application of these probes on the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated over a duration of 16 days indicated a strong correlation between the level of CFDSBR denitrification and relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH combined with microautoradiography (FISH-MAR) further confirmed that the DEN581- and DEN124-targeted cells dominating the CFDSBR were capable of taking up [14C] acetate under anoxic conditions. The initial occurrence of the DEN444- and DEN1454-targeted bacteria and the final dominance of DEN581- and DEN124-targeted bacteria in the CFDSBR community were likely related to the changing in-reactor nitrite concentrations during the first few days of CFDSBR operation. Hence, the DEN444- and DEN1454-targeted bacteria were hypothesised to have low affinities for nitrite while DEN124- and DEN581-targeted bacteria have higher nitrite affinities. However, it was clear that all probe-targeted bacteria were denitrifiers capable of utilising acetate as a carbon source. The rapid increase in numbers of the probe-targeted organisms positively correlates with the immediate increase in denitrification rates. The rapid response and community shifts observed when acetate was used to enhance denitrification suggest that an intermittent application of acetate is quite effective to temporarily enhance the denitrification capacity of a treatment plant. However, the importance of a bacterial impact assessment of activated sludge subjected to intermittent acetate supplementation is recommended prior to the wide use of acetate in the wastewater industry. The acetate utilising denitrifying microbial communities investigated in the previous chapter were characterised according to their eco-physiological properties using the r- and K-selection criteria. The electron donor (acetate) and acceptor (nitrite) affinities of these probe-identified denitrifiers were used as traits for this characterisation. The substrate to microorganism (S/M) ratio was manipulated to provide high and low substrate concentrations in the reactor to create conditions favourable for r- and K-strategists, respectively. Two factors, namely feeding regimes and sludge retention times, were studied to achieve the desired S/M ratios and enable r/K characterisation. The high substrate affinities and high specific growth rates of two probe-identified denitrifiers (DEN124 and DEN581) did not enable resolution of these two organisms with the feeding regimes used in this study. However, the application of different sludge retention times as a control strategy to maintain constant high and low in-reactor S/M ratios enabled characterisation of the two probe-targeted denitrifiers DEN124 and DEN581 as K- and r-strategists, respectively. The in-reactor S/M ratios applied in this study did not facilitate the characterisation of populations targeted by probes DEN444 and DEN1454. The minor fluctuations of the S/M ratios during a cycle in the SBR operation was considered as a drawback, but conclusive results could still be obtained from the study. A chemostat reactor operation with constant loading and variable flow rates is suggested as an alternative. Conclusively, this study was able to identify specific groups of denitrifying microorganisms in activated sludge when exposed to acetate and methanol. Unlike most previous studies, which relied on culture dependent methods, this study adopted a pure culture independent approach to identify microorganisms in relation to their function, i.e. denitrification. Moreover, acetate denitrifiers were in situ characterised based on eco-physiological properties. The identification of denitrifying communities in this study has paved the way to a larger research project on the optimisation of denitrification processes with external acetate, methanol and other carbon supplements. As such, this study has contributed significantly to the understanding of the denitrification processes by linking process data with microbial investigations.
|
24 |
Identification of denitrifying microbial communities in activated sludge exposed to external carbon sourcesGinige, Maneesha Prasaad Unknown Date (has links)
The aim of this thesis was to identify the denitrifying microbial communities in activated sludge from full-scale treatment plants and from small-scale reactors exposed to acetate or methanol as external carbon sources. Biological denitrification is currently the most widely used, sustainable and cost-effective process to remove nitrogen from wastewater. Increasingly strict effluent discharge standards are posing significant challenges to plant operators to reduce effluent NO3--N concentrations to levels as low as 2-3 mg L-1 or even lower. The lack of sufficient influent carbon in many municipal wastewater treatment plants makes it very difficult to achieve such low NO3--N concentrations in the effluent. An effective solution to the problem is to introduce additional external carbon sources to enhance denitrification. The selection of external carbon sources is not purely based on costs but is also dependent on the possible microbial transformations that these carbon sources may bring about in activated sludge. The most common carbon source used is methanol due to its low cost, but it has been found to cause long delays until an improvement in denitrification performance is observed. On the other hand, acetate has been found to improve denitrification almost instantaneously when added, but it has a significantly higher cost. In this study, methanol and acetate utilising denitrifiers were investigated in activated sludge with and without enrichment in laboratory scale bioreactors. The relevant denitrifiers were identified and evaluated in situ using culture independent methods particularly stable isotope probing (SIP), 16S rDNA cloning, fluorescence in situ hybridisation (FISH) and microautoradiography (MAR). Activated sludge collected from a biological nutrient removal plant exhibiting good denitrification was enriched in an anoxically-operated sequencing batch reactor (SBR) by feeding methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was operated over a duration of 7 months and the SBR denitrification rate improved from 0.02 mg NO3--N mg mixed liquor volatile suspended solids (MLVSS)-1 h-1 to a steady-state value of 0.06 mg NO3-N mg MLVSS-1 h-1. At steady state operation the enriched biomass was subjected to SIP with 13C-methanol to biomark the denitrifiers capable of utilising methanol under anoxic conditions. The separated 12C-DNA and 13C-DNA fractions from the SIP experiment were individually subjected to full cycle rRNA analysis. The dominant 16S rRNA gene phylotype (Group-A clones) in the 13C-library was closely related to the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96-97% sequence identities), while the most abundant clone groups in the 12C-library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes were designed for FISH to target the Group-A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes on SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, no correlation was found between denitrification rate and the relative abundances of the well known denitrifying genera Hyphomicrobium and Paracoccus nor the Saprospiraceae-clones visualised by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [14C] methanol uptake in the enriched biomass. As observed in full-scale operations, the methanol-fed SBR experienced a lag period of several weeks before denitrification performance increased. Using FISH quantification, it was shown that this coincided with the lag phase in the growth of the DEN67-targeted denitrifying population. It was therefore concluded that the Methylophilales bacteria dominant in our SBR system are likely to be important in full-scale methanol-fed denitrifying sludges. The acetate utilising microbial consortium in activated sludge was investigated without prior enrichment using stable isotope probing (SIP). 13C-acetate was used in SIP to biomark the DNA of the denitrifiers. The extracted 13C-DNA fraction was subjected to a full cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C-library were closely related to bacterial families Comamonadaceae and Rhodocyclaceae of class Betaproteobacteria (96-97% sequence identities). Seven oligonucleotide probes (DEN444, DEN220, DEN581, DEN441, DEN124, DEN220a and DEN1454) for use in FISH was designed to specifically target the identified phylotypes. Application of these probes on the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated over a duration of 16 days indicated a strong correlation between the level of CFDSBR denitrification and relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH combined with microautoradiography (FISH-MAR) further confirmed that the DEN581- and DEN124-targeted cells dominating the CFDSBR were capable of taking up [14C] acetate under anoxic conditions. The initial occurrence of the DEN444- and DEN1454-targeted bacteria and the final dominance of DEN581- and DEN124-targeted bacteria in the CFDSBR community were likely related to the changing in-reactor nitrite concentrations during the first few days of CFDSBR operation. Hence, the DEN444- and DEN1454-targeted bacteria were hypothesised to have low affinities for nitrite while DEN124- and DEN581-targeted bacteria have higher nitrite affinities. However, it was clear that all probe-targeted bacteria were denitrifiers capable of utilising acetate as a carbon source. The rapid increase in numbers of the probe-targeted organisms positively correlates with the immediate increase in denitrification rates. The rapid response and community shifts observed when acetate was used to enhance denitrification suggest that an intermittent application of acetate is quite effective to temporarily enhance the denitrification capacity of a treatment plant. However, the importance of a bacterial impact assessment of activated sludge subjected to intermittent acetate supplementation is recommended prior to the wide use of acetate in the wastewater industry. The acetate utilising denitrifying microbial communities investigated in the previous chapter were characterised according to their eco-physiological properties using the r- and K-selection criteria. The electron donor (acetate) and acceptor (nitrite) affinities of these probe-identified denitrifiers were used as traits for this characterisation. The substrate to microorganism (S/M) ratio was manipulated to provide high and low substrate concentrations in the reactor to create conditions favourable for r- and K-strategists, respectively. Two factors, namely feeding regimes and sludge retention times, were studied to achieve the desired S/M ratios and enable r/K characterisation. The high substrate affinities and high specific growth rates of two probe-identified denitrifiers (DEN124 and DEN581) did not enable resolution of these two organisms with the feeding regimes used in this study. However, the application of different sludge retention times as a control strategy to maintain constant high and low in-reactor S/M ratios enabled characterisation of the two probe-targeted denitrifiers DEN124 and DEN581 as K- and r-strategists, respectively. The in-reactor S/M ratios applied in this study did not facilitate the characterisation of populations targeted by probes DEN444 and DEN1454. The minor fluctuations of the S/M ratios during a cycle in the SBR operation was considered as a drawback, but conclusive results could still be obtained from the study. A chemostat reactor operation with constant loading and variable flow rates is suggested as an alternative. Conclusively, this study was able to identify specific groups of denitrifying microorganisms in activated sludge when exposed to acetate and methanol. Unlike most previous studies, which relied on culture dependent methods, this study adopted a pure culture independent approach to identify microorganisms in relation to their function, i.e. denitrification. Moreover, acetate denitrifiers were in situ characterised based on eco-physiological properties. The identification of denitrifying communities in this study has paved the way to a larger research project on the optimisation of denitrification processes with external acetate, methanol and other carbon supplements. As such, this study has contributed significantly to the understanding of the denitrification processes by linking process data with microbial investigations.
|
25 |
Identification of denitrifying microbial communities in activated sludge exposed to external carbon sourcesGinige, Maneesha Prasaad Unknown Date (has links)
The aim of this thesis was to identify the denitrifying microbial communities in activated sludge from full-scale treatment plants and from small-scale reactors exposed to acetate or methanol as external carbon sources. Biological denitrification is currently the most widely used, sustainable and cost-effective process to remove nitrogen from wastewater. Increasingly strict effluent discharge standards are posing significant challenges to plant operators to reduce effluent NO3--N concentrations to levels as low as 2-3 mg L-1 or even lower. The lack of sufficient influent carbon in many municipal wastewater treatment plants makes it very difficult to achieve such low NO3--N concentrations in the effluent. An effective solution to the problem is to introduce additional external carbon sources to enhance denitrification. The selection of external carbon sources is not purely based on costs but is also dependent on the possible microbial transformations that these carbon sources may bring about in activated sludge. The most common carbon source used is methanol due to its low cost, but it has been found to cause long delays until an improvement in denitrification performance is observed. On the other hand, acetate has been found to improve denitrification almost instantaneously when added, but it has a significantly higher cost. In this study, methanol and acetate utilising denitrifiers were investigated in activated sludge with and without enrichment in laboratory scale bioreactors. The relevant denitrifiers were identified and evaluated in situ using culture independent methods particularly stable isotope probing (SIP), 16S rDNA cloning, fluorescence in situ hybridisation (FISH) and microautoradiography (MAR). Activated sludge collected from a biological nutrient removal plant exhibiting good denitrification was enriched in an anoxically-operated sequencing batch reactor (SBR) by feeding methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was operated over a duration of 7 months and the SBR denitrification rate improved from 0.02 mg NO3--N mg mixed liquor volatile suspended solids (MLVSS)-1 h-1 to a steady-state value of 0.06 mg NO3-N mg MLVSS-1 h-1. At steady state operation the enriched biomass was subjected to SIP with 13C-methanol to biomark the denitrifiers capable of utilising methanol under anoxic conditions. The separated 12C-DNA and 13C-DNA fractions from the SIP experiment were individually subjected to full cycle rRNA analysis. The dominant 16S rRNA gene phylotype (Group-A clones) in the 13C-library was closely related to the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96-97% sequence identities), while the most abundant clone groups in the 12C-library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes were designed for FISH to target the Group-A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes on SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, no correlation was found between denitrification rate and the relative abundances of the well known denitrifying genera Hyphomicrobium and Paracoccus nor the Saprospiraceae-clones visualised by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [14C] methanol uptake in the enriched biomass. As observed in full-scale operations, the methanol-fed SBR experienced a lag period of several weeks before denitrification performance increased. Using FISH quantification, it was shown that this coincided with the lag phase in the growth of the DEN67-targeted denitrifying population. It was therefore concluded that the Methylophilales bacteria dominant in our SBR system are likely to be important in full-scale methanol-fed denitrifying sludges. The acetate utilising microbial consortium in activated sludge was investigated without prior enrichment using stable isotope probing (SIP). 13C-acetate was used in SIP to biomark the DNA of the denitrifiers. The extracted 13C-DNA fraction was subjected to a full cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the 13C-library were closely related to bacterial families Comamonadaceae and Rhodocyclaceae of class Betaproteobacteria (96-97% sequence identities). Seven oligonucleotide probes (DEN444, DEN220, DEN581, DEN441, DEN124, DEN220a and DEN1454) for use in FISH was designed to specifically target the identified phylotypes. Application of these probes on the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated over a duration of 16 days indicated a strong correlation between the level of CFDSBR denitrification and relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH combined with microautoradiography (FISH-MAR) further confirmed that the DEN581- and DEN124-targeted cells dominating the CFDSBR were capable of taking up [14C] acetate under anoxic conditions. The initial occurrence of the DEN444- and DEN1454-targeted bacteria and the final dominance of DEN581- and DEN124-targeted bacteria in the CFDSBR community were likely related to the changing in-reactor nitrite concentrations during the first few days of CFDSBR operation. Hence, the DEN444- and DEN1454-targeted bacteria were hypothesised to have low affinities for nitrite while DEN124- and DEN581-targeted bacteria have higher nitrite affinities. However, it was clear that all probe-targeted bacteria were denitrifiers capable of utilising acetate as a carbon source. The rapid increase in numbers of the probe-targeted organisms positively correlates with the immediate increase in denitrification rates. The rapid response and community shifts observed when acetate was used to enhance denitrification suggest that an intermittent application of acetate is quite effective to temporarily enhance the denitrification capacity of a treatment plant. However, the importance of a bacterial impact assessment of activated sludge subjected to intermittent acetate supplementation is recommended prior to the wide use of acetate in the wastewater industry. The acetate utilising denitrifying microbial communities investigated in the previous chapter were characterised according to their eco-physiological properties using the r- and K-selection criteria. The electron donor (acetate) and acceptor (nitrite) affinities of these probe-identified denitrifiers were used as traits for this characterisation. The substrate to microorganism (S/M) ratio was manipulated to provide high and low substrate concentrations in the reactor to create conditions favourable for r- and K-strategists, respectively. Two factors, namely feeding regimes and sludge retention times, were studied to achieve the desired S/M ratios and enable r/K characterisation. The high substrate affinities and high specific growth rates of two probe-identified denitrifiers (DEN124 and DEN581) did not enable resolution of these two organisms with the feeding regimes used in this study. However, the application of different sludge retention times as a control strategy to maintain constant high and low in-reactor S/M ratios enabled characterisation of the two probe-targeted denitrifiers DEN124 and DEN581 as K- and r-strategists, respectively. The in-reactor S/M ratios applied in this study did not facilitate the characterisation of populations targeted by probes DEN444 and DEN1454. The minor fluctuations of the S/M ratios during a cycle in the SBR operation was considered as a drawback, but conclusive results could still be obtained from the study. A chemostat reactor operation with constant loading and variable flow rates is suggested as an alternative. Conclusively, this study was able to identify specific groups of denitrifying microorganisms in activated sludge when exposed to acetate and methanol. Unlike most previous studies, which relied on culture dependent methods, this study adopted a pure culture independent approach to identify microorganisms in relation to their function, i.e. denitrification. Moreover, acetate denitrifiers were in situ characterised based on eco-physiological properties. The identification of denitrifying communities in this study has paved the way to a larger research project on the optimisation of denitrification processes with external acetate, methanol and other carbon supplements. As such, this study has contributed significantly to the understanding of the denitrification processes by linking process data with microbial investigations.
|
26 |
EXAMINING THE RELATIONSHIP BETWEEN THE GUT MICROBIOME AND CENTRAL NERVOUS SYSTEM INFLAMMATION IN RATS WITH FETAL ALCOHOL SYNDROMESarah G Moh (15348556) 26 April 2023 (has links)
<p> Fetal Alcohol Syndrome (FAS) is the most serious form of Fetal Alcohol Spectrum Disorders (FASD) and the most prevalent neurodevelopmental disorder in North America. Patients with FAS may exhibit cognitive problems with working memory, manipulating information, and reduced executive functioning. Additionally, previous studies exhibited that stress responses are affected by prenatal alcohol consumption Gut microbiota compositions can also influence stress responses and memory, as several studies have shown strong relationships between the enteric gut system and the brain. However, few studies have examined how prenatal alcohol exposure’s effects on the gut microbiome and neuroinflammatory responses. For this study, pregnant HsdBlu:LE Long Evans rats were treated with either a dry diet, liquid diet, or liquid diet with alcohol. On day 28 and 42 after birth, three male and three female adolescent pups from each treatment group had their gut microbiome (fecal samples) analyzed through 16S rRNA amplicon sequencing. Brain histology staining of the cortex and hippocampus regions was also done to evaluate changes in the CNS through microglial counts and morphology analysis. There were no significant differences in alpha diversity of the fecal microbiome between groups of pups based on prenatal alcohol exposure (PAE), sex, age, the interaction of PAE and sex, or in the morphology of cortex microglia. However, analysis of beta diversity using Bray-Curtis dissimilarity and weighted UniFrac suggested distinct microbial communities between the treatment groups based on PAE and the interaction of PAE, sex, and the interaction between PAE and sex. Microglial count comparisons by PAE or sex were only statistically different in the cortex (p ≤ 0.005). The significance of this study suggests that there are some associations between the gut microbiome and CNS inflammation in rats with PAE. Based on these findings, 11 future studies may implement therapeutics such as antibiotics or probiotics to mitigate cognitive or neural symptoms of FASD affected individuals. </p>
|
27 |
LISTERIA MONOCYTOGENES IN DELI MEATS AND WITHIN DRY BIOFILMS WITH PSEUDOMONAS AERUGINOSA AND SALMONELLA ENTERICA AND ENHANCING FOOD SAFETY RESEARCH OPPORTUNITIES FOR MINORITY SERVING INSTITUTIONSGurpreet Kaur (15348217) 29 April 2023 (has links)
<p>Unsafe food is responsible for causing more than 600 million cases of foodborne illnesses and 420,000 deaths each year. These foodborne illnesses have direct impact on growth and development in children, food and nutrition security, national economies, and sustainable development. Food manufactures, research institutions, governments, and consumers, together, play a pivotal role in establishing and implementing effective food safety systems. <em>Salmonella</em> spp. and <em>Listeria monocytogenes</em> are recognized as major threats to global food safety and security among other 31 known and unknown pathogens associated with foodborne illnesses and deaths. Since these pathogens can be transmitted through contaminated food and water, contaminated environmental surfaces, and subsequently from environment to food via cross-contamination, there is an urgent need for data-driven approaches to identify key points of contamination along the food systems to suggest interventions. While it is important to enhance food safety research in developed economies, developing capacity to enable conditions for food safety research translation and practice in developing economies is crucial for global food safety. In this dissertation, we presented three different research projects as summarized below-</p>
<p>In Chapter 2 “Evaluating the efficacy of celery powder in ready-to-eat deli style turkey breast against <em>L. monocytogenes</em> under ideal and temperature abuse conditions”. In this study, we artificially inoculated “clean label” deli style turkey breast formulated with celery powder to evaluate the efficacy of this natural antimicrobial in inhibiting the growth of this pathogen. We stored the inoculated samples at ideal (4 °C) and abuse temperature conditions (7 °C, 10 °C, and 15 °C) for 21 d mimicking the possible temperature abuse along the cold chain, transportation, and at consumer refrigerator. Our findings indicated that although deli meat samples stored at 4 °C and 7 °C did not achieve significant growth of <em>L. monocytogenes;</em> increasing temperatures to 10 °C and 15 °C led to significant increase in the growth rate of this pathogen. This study evaluates the use and effectiveness of celery powder as an antimicrobial used by deli meat processors against <em>L. monocytogenes</em> in deli products. These data underscore the importance of maintaining refrigeration temperatures to complement the efficacy of antimicrobials. </p>
<p>Chapter 3 “Investigating sanitary solutions to <em>L. monocytogenes, Salmonella enterica</em> ser. Typhimurium, and <em>Pseudomonas aeruginosa</em> dry surface biofilms”. In this study, we developed <em>in vitro</em> mono- and mix-culture dry surface biofilm (DSB) models of <em>L. monocytogenes, Salmonella enterica</em> ser. Typhimurium, and <em>Pseudomonas aeruginosa</em> leveraging the EPA MLB SOP MB-19 standard protocol using the CDC Biofilm Reactor and evaluated sanitation control strategies currently adopted by low-moisture food (LMF) food processors to determine their ability to inactive DSB, a decidedly difficult reservoir to eliminate. This study targets multiple biological hazards in a research area with very limited publicly available data and is the first of its kind to refine mono- and multi-species <em>in vitro</em> DSB models that mimic LMF facility conditions and combinations of relevant microorganisms for use cases (e.g., EPA adoption). The findings from this study indicated that these foodborne pathogens could form DSBs and serve as a source of pathogen reservoir and cross-contamination. Results from the efficacy testing of sanitizer and microfiber swabbing suggested that current sanitation practices may not be sufficient to remove or inactivate DSBs. This study will define future needs and new strategies to improve confidence in sanitation efficacy with private sector practitioners.</p>
<p>Chapter 4 “Enhancing research for development opportunities for Minority Serving Institutions: a case study in food safety”. Most developing economies have limited viable food safety systems due to underdeveloped research capabilities, competing resource demands, and insufficient enabling conditions, which undermines food security. United States Minority Serving Institution (MSIs) researchers and outreach specialists are familiar with and arguably best positioned to address global food safety and security challenges and needs, but MSIs implement limited research for development programs (e.g., U.S. university-led Feed the Future (FTF) Innovation Labs (ILs) funded by the United States Agency for International Development (USAID)) aimed to solve these challenges. Recognizing this opportunity, the Feed the Future Innovation Lab for Food Safety (FSIL) led by Purdue University in partnership with Cornell University, created and implemented an MSI-led research partnerships for global food safety research programs. In this chapter, we put together the process of a three-stage Request for Applications (RFA) process, which included non-competitive and competitive stages to encourage partnership and to refine ideas. At the end of this process, seven individuals were invited to submit full proposals; two were funded. Intentional research opportunities and partnerships are essential to strengthen MSI competitiveness for research for development programs that develop and scale technologies to address urgent global agriculture, food security, and safety challenges.</p>
|
Page generated in 0.1459 seconds