Spelling suggestions: "subject:"microcompartments"" "subject:"multicompartment""
1 |
Structural and synthetic biology study of bacterial microcompartmentsTuck, Laura January 2018 (has links)
Bacterial microcompartments (BMCs) are proteinaceous metabolic compartments found in a wide range of bacteria, whose function it is to encapsulate pathways for the breakdown of various carbon sources, whilst retaining toxic and volatile intermediates formed from substrate breakdown. Examples of these metabolic processes are the 1,2- propanediol-breakdown pathway in Salmonella enterica (Pdu microcompartment), as well as the ethanolamine breakdown pathway in Clostridium difficile (Eut microcompartment). Some of the major challenges to exploiting BMCs as a tool in biotechnology are understanding how enzymes are targeted to microcompartments, as well as being able to engineer the protein shell of BMCs to make synthetic microcompartments that allow specific enzyme pathways to be targeted to their interior. Finally, the metabolic burden imposed by the production of large protein complexes requires a detailed knowledge of how the expression of these systems are controlled. This project explores the structure and biochemistry of an essential BMC pathway enzyme, the acylating propionaldehyde dehydrogenase. With crystal structures of the enzyme with the cofactors in the cofactor binding site and biochemical data presented to confirm the enzyme's substrate. The project also focuses on the creation of synthetic biology tools to enable BMC engineering with a modular library of BMC shell protein parts; forward engineered ribosome binding sites (RBS) fused to BMC aldehyde dehydrogenase localisation sequences. The parts for this library were taken from the BMC loci found in Clostridium phytofermentans and Salmonella enterica. Using a synthetic biology toolkit will allow the rapid prototyping of BMC constructs for use in metabolic engineering. The shell protein parts were used to generate a number of transcriptional units, to assess the effect of overexpression of individual BMC shell components on the morphology of BMCs and the effect these had on their host chassis. Different strength forward engineered RBS and localisation constructs have been designed to assess the possibility of controlling the levels of heterologous proteins targeted to the interior of microcompartment shell to allow metabolic engineering of encapsulated pathways. Along with looking at overexpression of a single shell protein, to assess viability of BMCs as scaffold-like structures, recombinant BMCs can be explored for their utility in bioengineering and their potential role in generating biofuels.
|
2 |
Characterization of the Interactions Mediated by the Key Structural Protein CcmL: Cornerpiece of the Beta-CarboxysomeKeeling, Thomas 16 January 2013 (has links)
While much is known about the structure and interactions of the β-carboxysomal proteins, interactions of the proposed vertex protein CcmL with the other components have not yet been directly demonstrated. A fluorescence resonance energy transfer based method combined with other complementary spectrophotometry techniques as well as x-ray crystallography and transmission electron microscopy was used in a Thermosynechococcus elongatus BP-1 model to study these interactions. CcmL was found to interact with the various CcmK shell proteins with a clear binding preference for CcmK2; the previously proposed interaction of CcmL with CcmM was shown to not occur in vitro, and a possible CcmL-CcmL interaction was observed tentatively. In addition, analysis of a novel x-ray crystal structure of Nostoc sp. PCC7120 CcmL in a decameric form suggests a possibility of a CcmL-CcmL back-to-back interaction. This study gives the first direct experimental evidence for the biological role of CcmL as the carboxysomal vertex protein.
|
Page generated in 0.0933 seconds