• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 52
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 147
  • 73
  • 57
  • 28
  • 26
  • 21
  • 21
  • 19
  • 17
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

ADSORPCE ORGANICKÝCH LÁTEK PRODUKOVANÝCH SINICÍ MICROCYSTIS AERUGINOSA NA AKTIVNÍM UHLÍ / ADSORPTION OF ALGAL ORGANIC MATTER PRODUCED BY MICROCYSTIS AERUGINOSA ONTO ACTIVATED CARBON

Krsová, Magdalena January 2013 (has links)
The aim of this diploma thesis is to evaluate the efficiency of two types of granular activated carbon (GAC), Filtrasorb TL 830 and Picabiol 12x40, for the adsorption of cellular peptides with low molecular weight produced by cyanobacterium Microcystis aeruginosa that are hardly removable during the coagulation/flocculation processes. The effect of different carbon properties (surface charge, textural characteristics), peptide properties (molecular size, surface functionality and charge) and solution characteristics (ionic strength and pH value) on the peptide uptake was investigated using laboratory equilibrium and kinetic adsorption experiments. The results showed that adsorption of peptides was influenced by the charge conditions in adsorption system that depend on solution pH. The pH value influences surface charge and the point of zero charge (pHpzc) of GAC as well as dissociation and protonization of peptide functional groups. It was found that efficiency of the peptide adsorption increased with decreasing pH value for both GACs. Under these conditions adsorption was enhanced by attractive electrostatic interactions between GAC surface and peptide functional groups and was also positively influenced by the conformation changes in peptide structure. GAC Picabiol 12x40 showed the total highest...
142

Effects of Elevated Salinity and Oxidative Stress on the Physiology of the Toxigenic Cyanobacterium Microcystis Aeruginosa

Warhurst, Billy Christopher 01 January 2014 (has links)
Harmful algal blooms (HABs) are found worldwide, particularly in places where warm, well-lit, and stagnant waters are common. HABs can have negative effects on aquatic plants and wildlife due to the reduction in light availability associated with turbidity, decrease in O2 availability, and the production of secondary metabolites that can harm or even prove lethal. Aquatic ecosystems are regularly being affected by elevated salinity because of recent water management strategies, episodes of drought, and salt water intrusion. This research focused on how salinity levels ranging from 0-10ppt affected physiological attributes such as cellular growth and abundance, cell mortality, toxin release, and oxidative stress in the toxigenic cyanobacterium, Microcystis aeruginosa. It was determined that salinity treatments of 7ppt and above caused a decrease in both cellular growth and abundance, as well as an increase in toxin release due to cell mortality. M. aeruginosa was able to survive in salinities up to 7ppt. A pattern of caspase activity in response to elevated salinity was shown, but whether cellular mortality was due solely to programmed cell death (PCD) was not definitive. A strong antioxidant response, measured through catalase activity, was noted when salinity was enhanced to 7ppt. Above this value, the damaging effects of salinity caused elevated levels of reactive oxygen species (ROS) production and cell death. It was determined that the maximum amount of hydrogen peroxide that M. aeruginosa could withstand without significant impact to growth and abundance was below 250µM. Salinities of 7ppt and above had a negative impact on the physiology of M. aeruginosa, leading to cell death and an increase in microcystin release into the environment. These two factors can lead to fish kills, poor drinking water, and other recreational and commercial problems for an aquatic ecosystem. By determining the precise salinity that HAB cellular mortality is imminent, predictive models can be employed to predict the impacts of salt intrusion and groundwater management.
143

Methods to Monitor Lake Erie's Harmful Algal Blooms: A Fellowship with the Cooperative Institute for Great Lakes Research

Fyffe, Deanna Lynne 30 November 2017 (has links)
No description available.
144

​​USE OF ALGAE, CYANOBACTERIA, AND INDIGENOUS BACTERIA FOR THE SUSTAINABLE TREATMENT OF AQUACULTURE WASTEWATER​<b> </b>

Yolanys Nadir Aranda Vega (18433941) 27 April 2024 (has links)
<p dir="ltr">Aquaculture is a controlled aquatic farming sector and one of the most important human food sources. Fish farming is one of the predominant, fast-growing sectors that supply seafood products worldwide. Along with its benefits, aquaculture practices can discharge large quantities of nutrients into the environment through non-treated or poorly treated wastewater. This study aims to understand the nutrient composition of fish wastewater and the use of indigenous bacteria, cyanobacteria, and microalgae as an alternative biological treatment method. Wastewater samples from a local fish farming facility were collected and treated using six different species of cyanobacteria and microalgae include <i>Chroococcus</i><i> </i><i>minutus</i>, <i>Porphyridium</i><i> </i><i>cruentum</i>, <i>Chlorella vulgaris</i>, <i>Microcystis aeruginosa</i>, <i>Chlamydomonas </i><i>reinhardtii</i>, and <i>Fischerella</i><i> </i><i>muscicola</i>. All the samples were incubated for 21 days, and the following parameters were measured weekly: Chemical oxygen demand (COD), phosphate, total dissolved nitrogen, and dissolved inorganic nitrogen. In addition, dissolved organic nitrogen (DON), bioavailable DON (ABDON), and biodegradable DON (BDON) were calculated from the mass-balance equations. Colorimetric and digestive methods were used for the parameter measurements. The results showed that <i>C. </i><i>reinhardtii</i> reduced the soluble COD concentration by 74.6%, DON by 94.3%, and phosphorous by more than 99%. Moreover, <i>M. aeruginosa</i>, and <i>C. </i><i>minutus</i> significantly reduced inorganic nitrogen species (>99%). This alternative fish wastewater treatment method was explored to gain insight into fish wastewater nutrient composition and to create a sustainable alternative to conventional fish wastewater treatment methods.<b> </b></p>
145

A biofilter process for phytoplankton removal prior to potable water treatment works : a field and laboratory study

Castro-Castellon, Ana January 2016 (has links)
Phytoplankton blooms compromise the quality of freshwater ecosystems and the efficient processing of water by treatment works worldwide. This research aims to determine whether in-situ filamentous biofiltration processes mediated by living roots and synthetic filters as media can reduce or remove the phytoplankton loading (micro-algae and cyanobacteria) prior to a potable water treatment works intake. The underlying biofiltration mechanisms were investigated using field and laboratory studies. A novel macroscale biofilter with three plant species, named the "Living-Filter", installed in Farmoor II reservoir, UK, was surveyed weekly for physicochemical and biological variables under continuous flow conditions during 17 weeks. The efficiency of a mesoscale biofilter using the aquatic plant Phalaris arundinacea and synthetic filters, was tested with Microcystis aeruginosa under continuous flow conditions and in batch experiments. The 'simultaneous allelochemical method' was developed for quantifying allelochemicals from Phalaris in aqueous samples. Microscale studies were used to investigate biofilter allelochemical release in response to environmental stressors and Microcystis growth inhibition in filtered and unfiltered aqueous root exudate. Results demonstrate that the removal of phytoplankton biomass by physical mechanisms has a removal efficiency of &le;45% in the "Living-Filter" (filamentous biofilter plus synthetic fabric) and that the removal of Microcystis biomass using only biofilters was 25%. Chemical mechanisms that reduce Microcystis cell numbers are mediated by allelochemicals released from biofilter roots. Root exudate treatments on Microcystis revealed that Microcystis growth is inhibited by allelochemicals, not by nutrient competition, and that protists and invertebrates play a role in removing Microcystis. Filamentous biofilters can remove phytoplankton biomass by physical, chemical and biological mechanisms. Biofilters and synthetic filters in combination improve removal efficiency. Application of macroscale biofilters prior to potable water treatment works benefits the ecosystem. Plant properties, biofilter size to surface water ratio, and retention time must be considered to maximise the benefits of biofiltration processes.
146

Investigation of the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei Dam, Roodeplaat Dam and Hartbeespoort Dam in Crocodile (West) and Marico Water Management Area

Mbiza, Noloyiso Xoliswa 02 1900 (has links)
Eutrophication is a nutrient enrichment of dams and lakes. Increased eutrophication in dams results in blooms of cyanobacteria. Cyanobacteria are troublesome as they form massive surface scums, impart taste and odour to the water. Some strains of cyanobacteria such as Microcystis aeruginosa are dangerous to humans and animals. They produce toxins that can kill animals drinking the contaminated water and have also been implicated in human illnesses. The study investigated the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei, Roodeplaat and Hartbeespoort Dams. This was done by interpreting data from April 2010 to March 2012. The conditions in the three dams show that Microcystis produced toxins in the summer season and all the variables analysed were favourable for the production of toxins. The methods deployed to rehabilitate the dams do not completely solve the problems of toxins experienced by the dams. / Environmental Sciences / M. Sc. (Environmental Management)
147

Investigation of the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei Dam, Roodeplaat Dam and Hartbeespoort Dam in Crocodile (West) and Marico Water Management Area

Mbiza, Noloyiso Xoliswa 02 1900 (has links)
Eutrophication is a nutrient enrichment of dams and lakes. Increased eutrophication in dams results in blooms of cyanobacteria. Cyanobacteria are troublesome as they form massive surface scums, impart taste and odour to the water. Some strains of cyanobacteria such as Microcystis aeruginosa are dangerous to humans and animals. They produce toxins that can kill animals drinking the contaminated water and have also been implicated in human illnesses. The study investigated the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei, Roodeplaat and Hartbeespoort Dams. This was done by interpreting data from April 2010 to March 2012. The conditions in the three dams show that Microcystis produced toxins in the summer season and all the variables analysed were favourable for the production of toxins. The methods deployed to rehabilitate the dams do not completely solve the problems of toxins experienced by the dams. / Environmental Sciences / M. Sc. (Environmental Management)

Page generated in 0.0589 seconds