Spelling suggestions: "subject:"microfluidic.""
301 |
Modeling and Stability of Flows in Compliant MicrochannelsXiaojia Wang (13113021) 19 July 2022 (has links)
<p>Fluids conveyed in deformable conduits are often encountered in microfluidic applications, which makes fluid--structure interactions (FSIs) an unavoidable phenomenon. In particular, experiments reported the existence of FSI instabilities in compliant microchannels at low Reynolds numbers, Re, well below the established values for rigid conduits. This observation has significant implications for new strategies for mixing at the microscale, which might harness FSI instabilities in the absence of turbulence. In this thesis, we conduct research on the modeling and stability of microscale FSIs. Understanding the steady response, the dynamics and the stability of these FSIs are the three major objectives. This thesis begins with the analysis of the steady-state scalings and the linear stability of a previously derived mathematical model, through which we emphasize the power of reduced modeling in making the FSI problems tractable. Next, we turn to a more realistic problem regarding FSIs in a common configuration of low-Re flows through long, shallow rectangular three-dimensional microchannels. Through a scaling analysis, which takes advantage of the geometric separation of scales, we find that the flow can be simplified under the lubrication approximation, while the wall deforms like a variable-stiffness Winkler foundation at the leading order. Coupling these dominant effects, we obtain a new fitting-parameter-free flow rate--pressure drop relation for a thick-walled microchannel, which rationalizes previous experiments. Then, we derive a one-dimensional (1D) steady model, at both vanishing and finite Re, by coupling the reduced flow and deformation models. To satisfy the displacement constraints along the channel edges, weak tension is introduced to regularize the underlying Winkler-foundation-like mechanism. This model is then made dynamic by introducing flow unsteadiness and the elastic wall's inertia. We conduct a global stability analysis of this system by perturbing the non-flat steady state with infinitesimal perturbations. We identify the existence of globally unstable modes, typically in the weakly inertial flow regime, whose features are consistent with experimental observations. The unstable eigenmodes oscillate at frequencies close to the natural frequency of the wall, suggesting that the instabilities are resonance phenomena. We also capture the transient energy amplification of perturbations through a linear non-normality analysis of the proposed reduced 1D FSI model.</p>
|
302 |
Multiphase Flows with Digital and Traditional MicrofluidicsNilsson, Michael Andrew 01 May 2013 (has links)
Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both.
In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter.
As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how shear-thinning, shear-thickening, and viscoelastic fluids affect oil recovery. This work begins by looking at oil displacement from a microfluidic sandstone device, then investigates small-scale oil recovery from a single pore, and finally investigates oil displacement from larger scale, more complex microfluidic sandstone devices of varying permeability. The results demonstrate that with careful fluid design, it is possible to outperform current commercial additives using the patent-pending fluid we developed. Furthermore, the resulting microfluidic sandstone devices can reduce the time and cost of developing and testing of current and new enhanced oil recovery fluids.
|
303 |
Fault Modeling and Fault Type Distinguishing Test Methods for Digital Microfluidics ChipsSun, Xinyu January 2013 (has links)
No description available.
|
304 |
Inertial microfluidics for particle separation and filtrationBhagat, Ali Asgar Saleem 15 April 2009 (has links)
No description available.
|
305 |
Inertial microfluidic vortex cell sorterWang, Xiao 27 May 2016 (has links)
No description available.
|
306 |
Novel methods for micellar electro kinetic chromatography and preconcentration on traditional micro fluidic devices and the fabrication and characterization of paper micro fluidicHoeman, Kurt W. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher T. Culbertson / Chemical separations are a necessary component in many scientific analyses. Microfluidics, the use of micron-sized fluidic channels defined in glass or polymer blends, is a powerful branch of separation science that is developing rapidly. Miniaturized analytical devices offer important advantages compared to traditional bench-top techniques, most notably capillary electrophoresis (CE).
This dissertation was focused on developing several novel methods to improve microfluidic based separations and techniques. The electrophoretic separation of small similarly charged analytes can be very difficult. Chapter 2 discusses a new buffer that has been developed for fast, high efficiency separations of amino acids by micellar electrokinetic chromatography (MEKC). This buffer is more environmentally friendly than the most commonly used surfactant containing buffers for MEKC separations. It uses a commercially available dish washing soap by Seventh Generation™ Inc. that contains three micelle forming agents; sodium lauryl ether sulfate (anionic), cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (MEA) (non-ionic), and is completely void of organic solvents.
Many biological samples contain analytes below the limit of detection of traditional detection systems; therefore, chapter 3 reports the fabrication of nanoporous membranes on microfluidic devices that are capable of analyte concentration enrichment. Donnan exclusion is responsible for the preconcentration of fluorescent dyes near a
charged, porous titania membrane. The level of analyte enrichment was monitored, and enrichment factors greater than 4000 in 400 s were obtained for 2,7-Dichlorofluorescein.
Chapter 4 describes the fabrication and characterization of paper based microfluidic devices. Mixtures of acrylate modified photocurable polymers were used to photolithographically define channels on multiple paper substrates. Flow characteristics are described and their use for monitoring complications associated with type 1 diabetes is demonstrated. Finally in Chapter 5, Sol-gel modified gold surfaces for preventing protein adsorption during surface plasmon resonance (SPR) detection are also presented.
|
307 |
Development of Integrated Dielectric Elastomer Actuators (IDEAS): trending towards smarter and smaller soft microfluidic systemsPrice, Alexander K. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher T. Culbertson / During the last five years, great advancements in microfluidics have been achieved with the development of “sample-in-answer-out” systems. Such systems have begun to realize the true potential of analytical miniaturization since the concept of the “micro-Total Analysis System” was first envisioned. These systems are characterized by the elegant integration of multiple fluid-handling channel architectures that enable serial execution of sample preparation, separation and detection techniques on a single device. While miniaturization and portability are often identified as key advantages for microfluidics, these highly integrated systems are heavily reliant upon large off-chip equipment, i.e. the microchip is often tethered to the laboratory via multiple syringe pumps, vacuum pumps, solenoid valves, gas cylinders and high voltage power supplies.
In this dissertation, a procedure for the facile integration of dielectric elastomer (DE) actuators (called IDEAs) onto microfluidic devices is described. Poly(dimethylsiloxane) (PDMS) is commonly used as a microchip substrate because it is cheap and easy to fabricate, mechanically robust and optically transparent. The operation of an IDEA exploits the ability of PDMS to behave as a smart material and deform in the presence of an electric field. In Chapter 2, the fabrication of IDEA units on a standard microchip electrophoresis device is described. IDEA-derived injections were used to evaluate the physical performance of this novel actuator configuration.
In Chapter 3, the analytical merits of IDEA-derived injections were evaluated. Sampling bias caused by electokinetic injection techniques has been problematic for conventional microchip electrophoresis systems due to the lack of fluid access. The hydrodynamic injections created by IDEA operation were found to be highly reproducible, efficient, and possess a negligible degree of sampling bias. In Chapter 4, the spatial characteristics of microchannel deformation due to IDEA actuation have been investigated using fluorescence microscopy. It was determined that the DE compresses more along the edge of the channel than in the middle of the channel. This information can be used to design a new generation of more efficient IDEAs.
|
308 |
Analytical modelling and optimization of a thermal convective microfluidic gyroscopeVosloo, Surika 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis deals with the mathematical optimization of the detecting chamber of a thermal convective
microfluidic gyroscope and the comparison of several different optimization strategies.
An analytical model is developed for the gyroscope and some design considerations are discussed. Sequential
approximate optimization strategies are explained and compared to each other by implementing
test problems fromthe literature. The optimization problem is formulated from the analytical model
and implemented using the different optimization strategies. Results are presented and compared to
find the most effective optimization strategy.
A sequential approximate optimization algorithm is implemented in MATLAB and tested using the gyroscope
design problem and common test problems from the literature. Results and iteration history are
compared with an existing FORTRAN implementation. / AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die wiskundige optimering van die deteksiekamer van n termies-konvektiewe
mikrovloeier giroskoop en die vergelyking van verskeie optimeringsstrategieë.
’n Analitiese model is opgestel vir die giroskoop en verskeie ontwerpsoorwegings word bespreek. Sekwensiëel
benaderde optimeringsstrategieë word bespreek en met mekaar vergelyk, deur dit op toetsprobleme
uit die literatuur toe te pas. Die optimeringsprobleem is geformuleer uit die analitiese model
en geimplementeer deur gebruik te maak van verskeie optimeringsstrategieë. Resultate word getoon en
vergelyk, omdie mees effektiewe optimeringsstrategie te vind.
’n Algoritme vir sekwensiëel benaderde optimeringsprobleme is inMATLAB geimplementeer. Die giroskoop
probleem, asook probleme uit die literatuur, is gebruik om resultate en iterasie geskiedenis te vergelyk
met ’n bestaande FORTRAN implementasie.
|
309 |
Compound droplets for lab-on-a-chipBlack, James Aaron 27 May 2016 (has links)
The development of a novel method of droplet levitation to be employed in lab-on-a-chip (LOC) applications relies upon the mechanism of thermocapillary convection (due to the temperature dependence of surface tension) to drive a layer of lubricating gas between droplet and substrate. The fact that most droplets of interest in LOC applications are aqueous in nature, coupled with the fact that success in effecting thermocapillary transport in aqueous solutions has been limited, has led to the development of a technique for the controlled encapsulation of water droplets within a shell of inert silicone oil. These droplets can then be transported, virtually frictionlessly, resulting in ease of transport due to the lack of friction as well as improvements in sample cross-contamination prevention for multiple-use chips. Previous reports suggest that levitation of spherical O(nL)-volume droplets requires squeezing to increase the apparent contact area over which the pressure in the lubricating layer can act allowing sufficient opposition to gravity. This research explores thermocapillary levitation and translation of O(nL)-volume single-phase oil droplets; generation, capture, levitation, and translation of O(nL)-volume oil-encapsulated water droplets to demonstrate the benefits and applicability to LOC operations.
|
310 |
The Optical StretcherFaigle, Christoph 23 June 2016 (has links) (PDF)
The mechanical parameters of biological cells are relevant indicators of their function or of disease. For example, certain cancerous cells are more deformable than healthy cells. The challenge consists in developing methods that can measure these parameters while not affecting the cell. The Optical Stretcher is a microfluidic system that deforms single suspended cells without contact using lasers and determines the cells’ viscoelastic properties. The advantage compared to standard methods of molecular biology is that cells do not need to be treated with additional markers. Basic versions of the Optical Stretcher have existed for some years. These allow the measurement of homogeneous cell populations. Up until now, it was only possible to calculate average population values of compliance. To characterize inhomogeneous populations however, it is necessary to consider each single cell and measure additional mechanical or optical parameters such as the refractive index.
This work highlights various extensions of the Optical Stretcher. A novel procedure, including an improved image processing algorithm, is presented to analyze mechanical data in real time. In combination with measurements of the optical refractive index, single cells can now be characterized in more detail. Moreover, it is now possible to extract interesting subpopulations that can be further examined with molecular biology techniques. Depending on the intended purpose, novel devices for cell measurements, based on microfluidic and optical considerations, are presented. The fundamental concept involves microstructured chips that can be integrated into a commercial microscope. These chips offer the possibility of separating measured cell populations according to their mechanical properties. This separation, including mathematical classification, is demonstrated. These methods are tested with cell types of differing mechanical properties to prove their applicability in practice. Single cells are sorted into their respective population of origin. These novel methods offer the possibility of a versatile device to be applied in biophysical research.
|
Page generated in 0.0493 seconds