81 |
Plasmonic devices for surface optics and refractive index sensing / Composants plasmoniques pour l'optique de surface et la mesure de faibles variations d'indiceStein, Benedikt 03 July 2012 (has links)
Ce manuscrit s'inscrit dans le contexte du contrôle de la propagation des plasmons de surface. A cet effet, des nanostructures diélectriques et métalliques ont été conçues et caractérisées par microscopie à champ de fuite dans les espaces réels et réciproques. La manipulation des plasmons de surface à l'aide de lentilles diélectriques et d' éléments à gradient d'indice est présentée, et la réfraction négative, la direction et l'auto-collimation des plasmons de surface dans des cristaux plasmoniques à une ou deux dimensions sont démontrées. Ces résultats ont été utilisés pour le guidage de nanoparticules à l'aide de forces optiques, ainsi que pour deux méthodes permettant de renforcer le facteur de mérite de sondes plasmoniques de variation d'indice de réfraction, basées l' une sur les résonances de Fano naturelles de la microscopie à champ de fuite, et pour la seconde sur les structures des bandes plasmoniques anisotropes. / In this thesis devices for controlling the flow of surface plasmon polaritons are described. Dielectric and metallic nanostructures were designed for this purpose, and characterized by leakage radiation microscopy in real and in reciprocal spaces. Manipulation of surface plasmons by dielectric lenses and gradient index elements is presented, and negative refraction, steering and self-collimation of surface plasmons in one- and two-dimensional plasmonic crystals is demonstrated. The achieved degree of control was applied for routing of nanoparticles by optical forces, as well as for two methods of enhancing the figures of merit of plasmonic refractive index sensors, based on the one hand on Fano resonances natural to leakage radiation microscopy, and on the other hand on anisotropie plasmonic bandstructures.
|
82 |
Développement et Commande Modulaire d'une Station de MicroassemblageRakotondrabe, Micky 30 November 2006 (has links) (PDF)
Pour fabriquer des produits de petites tailles, appelés micro-produits, l'utilisation de systèmes de production de dimensions habituelles conduit à des problèmes difficile à surmonter : coûts d'investissement et de fonctionnement des outils de production et problèmes techniques à cause des éffets d'echelle. Il en résulte une situation non concurrentielle même pour des systèmes automatisés.<br />La solution d'avenir consiste à disposer de systèmes de production dont les dimensions et les coûts sont en rapport avec les produits concernés : c'est le concept de micro-usine (microfactory).<br />L'objectif de cette thèse porte sur la conception et la commande d'une station de micromanipulation dédiée à une micro-usine. Afin d'assurer une flexibilité maximale à la micro-usine, nous proposons d'aborder la problématique de sa conception en développant à son maximum le concept de modularité. Il semble être une clé pour intégrer les spécificités d'un microsystème de production. Cette modularité doit se trouver au niveau de la commande, autant pour les tâches à réaliser que pour le pilotage de la station de micromanipulation.
|
83 |
Design And Development Of Miniature Compliant Grippers For Bio-Micromanipulation And CharacterizationBhargav, Santosh D B 07 1900 (has links) (PDF)
Miniature compliant grippers are designed and developed to manipulate biological cells and characterize them. Apart from grippers, other compliant mechanisms are also demonstrated to be effective in manipulation and characterization. Although scalability and force-sensing capability are inherent to a compliant mechanism, it is important to design a compliant mechanism for a given application. Two techniques based on Spring-lever models and kinetoelastostatic maps are developed and used for designing compliant devices. The kinetoelastostatic maps-based technique is a novel approach in designing a mechanism of a given topology and shape. It is also demonstrated that these techniques can be used to tune the stiffness of a mechanism for a given application. In situations where any single mechanism is incapable of executing a specific task, two or more mechanisms are combined into a single continuum with enhanced functionality. This has led to designs of composite compliant mechanisms.
Biological cells are manipulated using compliant grippers in order to study their mechanical responses. Biological cells whose size varies from 1 mm (a large zebrafish embryo) to 10 µm (human liver cells), and which require the grippers to resolve forces ranging from 1 mN (zebrafish embryo) to 10 nN (human cells), are manipulated. In addition to biological cells, in some special cases such as tissue-cutting and cement-testing, inanimate specimens are used to highlight specific features of compliant mechanisms. Two extreme cases of manipulation are carried out to demonstrate the efficacy of the design techniques. They are: (i) breaking a stiff cement specimen of stiffness 250 kN/m (ii) gentle grasping of a soft zebrafish embryo of stiffness 10 N/m.
Apart from manipulation, wherever it is viable, the mechanisms are interfaced with a haptic device such that the user’s experience of manipulation is enriched with force feedback.
An auxiliary study on the characterization of cells is carried out using a micro¬pipette based aspiration technique. Using this technique, cells existing in different conditions such as perfusion, therapeutic medicines, etc., are mechanically characterized. This study is to qualitatively compare aspiration-based techniques with compliant gripper-based manipulation techniques.
A compliant gripper-based manipulation technique is beneficial in estimating the bulk stiffness of the cells and can be extended to estimate the distribution of Young’s modulus in the interior. This estimation is carried out by solving an inverse problem. A previously reported scheme to solve over specified boundary conditions of an elastic object—in this case a cell—is improved, and the improved scheme is validated with the help of macro-scale specimens.
|
84 |
Plasmonic devices for surface optics and refractive index sensingStein, Benedikt 03 July 2012 (has links) (PDF)
In this thesis devices for controlling the flow of surface plasmon polaritons are described. Dielectric and metallic nanostructures were designed for this purpose, and characterized by leakage radiation microscopy in real and in reciprocal spaces. Manipulation of surface plasmons by dielectric lenses and gradient index elements is presented, and negative refraction, steering and self-collimation of surface plasmons in one- and two-dimensional plasmonic crystals is demonstrated. The achieved degree of control was applied for routing of nanoparticles by optical forces, as well as for two methods of enhancing the figures of merit of plasmonic refractive index sensors, based on the one hand on Fano resonances natural to leakage radiation microscopy, and on the other hand on anisotropie plasmonic bandstructures.
|
85 |
Numerical modeling of the surface and the bulk deformation in a small scale contact: application to the nanoindentation interpretation and to the micro-manipulationBerke, Peter 19 December 2008 (has links)
<p align='justify'>L’adaptation des surfaces pour des fonctions prédéterminées par le choix des matériaux métalliques ou des couches minces ayant des propriétés mécaniques avancées peut potentiellement permettre de réaliser des nouvelles applications à petites échelles. Concevoir de telles applications utilisant des nouveaux matériaux nécessite en premier lieu la connaissance des propriétés mécaniques des matériaux ciblés à l’échelle microscopique et nanoscopique. Une méthode souvent appliquée pour caractériser les matériaux à petites échelles est la nanoindentation, qui peut être vue comme une mesure de dureté à l’échelle nanoscopique.</p><p><p align='justify'>Ce travail présente une contribution relative à l'interprétation des résultats de la nanoindentation, qui fait intervenir un grand nombre de phénomènes physiques couplés à l'aide de simulations numériques. A cette fin une approche interdisciplinaire, adaptée aux phénomènes apparaissant à petites échelles, et située à l’intersection entre la physique, la mécanique et la science des matériaux a été utilisée. Des modèles numériques de la nanoindentation ont été conçus à l'échelle atomique (modèle discret) et à l'échelle des milieux continus (méthode des éléments finis), pour étudier le comportement du nickel pur. Ce matériau a été choisi pour ses propriétés mécaniques avancées, sa résistance à l'usure et sa bio-compatibilité, qui peuvent permettre des applications futures intéressantes à l'échelle nanoscopique, particulièrement dans le domaine biomédical. Des méthodes avancées de mécanique du solide ont été utilisées pour prendre en compte les grandes déformations locales du matériau (par la formulation corotationelle), et pour décrire les conditions de contact qui évoluent au cours de l'analyse dans le modèle à l'échelle des milieux continus (traitement des conditions de contact unilatérales et tangentielles par une forme de Lagrangien augmenté).</p><p><p align='justify'>L’application des modèles numériques a permis de contribuer à l’identification des phénomènes qui gouvernent la nanoindentation du nickel pur. Le comportement viscoplastique du nickel pur pendant nanoindentation a été identifié dans une étude expérimentale-numérique couplée, et l'effet cumulatif de la rugosité et du frottement sur la dispersion des résultats de la nanoindentation a été montré par une étude numérique (dont les résultats sont en accord avec des tendances expérimentales).</p> <p><p align='justify'>Par ailleurs, l’utilisation de l’outil numérique pour une autre application à petites échelles, la manipulation des objets par contact, a contribué à la compréhension de la variation de l’adhésion électrostatique pendant micromanipulation. La déformation plastique des aspérités de surface sur le bras de manipulateur (en nickel pur) a été identifiée comme une source potentielle d’augmentation importante de l'adhésion pendant la micromanipulation, qui peut potentiellement causer des problèmes de relâche et de précision de positionnement, observés expérimentalement.</p><p><p align='justify'>Les résultats présentés dans cette thèse montrent que des simulations numériques basées sur la physique du problème traité peuvent expliquer des tendances expérimentales et contribuer à la compréhension et l'interprétation d'essais couramment utilisé pour la caractérisation aux petites échelles. Le travail réalisé dans cette thèse s’inscrit dans un projet de recherche appelé "mini-micro-nano" (mµn), financé par la Communauté Française de Belgique dans le cadre de "l'Action de Recherche Concertée", convention 04/09-310.</p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
86 |
Biophysics of helices : devices, bacteria and virusesKatsamba, Panayiota January 2018 (has links)
A prevalent morphology in the microscopic world of artificial microswimmers, bacteria and viruses is that of a helix. The intriguingly different physics at play at the small scale level make it necessary for bacteria to employ swimming strategies different from our everyday experience, such as the rotation of a helical filament. Bio-inspired microswimmers that mimic bacterial locomotion achieve propulsion at the microscale level using magnetically actuated, rotating helical filaments. A promising application of these artificial microswimmers is in non-invasive medicine, for drug delivery to tumours or microsurgery. Two crucial features need to be addressed in the design of microswimmers. First, the ability to selectively control large ensembles and second, the adaptivity to move through complex conduit geometries, such as the constrictions and curves of the tortuous tumour microvasculature. In this dissertation, a mechanics-based selective control mechanism for magnetic microswimmers is proposed, and a model and simulation of an elastic helix passing through a constricted microchannel are developed. Thereafter, a theoretical framework is developed for the propulsion by stiff elastic filaments in viscous fluids. In order to address this fluid-structure problem, a pertubative, asymptotic, elastohydrodynamic approach is used to characterise the deformation that arises from and in turn affects the motion. This framework is applied to the helical filaments of bacteria and magnetically actuated microswimmers. The dissertation then turns to the sub-bacterial scale of bacteriophage viruses, 'phages' for short, that infect bacteria by ejecting their genetic material and replicating inside their host. The valuable insight that phages can offer in our fight against pathogenic bacteria and the possibility of phage therapy as an alternative to antibiotics, are of paramount importance to tackle antibiotics resistance. In contrast to typical phages, flagellotropic phages first attach to bacterial flagella, and have the striking ability to reach the cell body for infection, despite their lack of independent motion. The last part of the dissertation develops the first theoretical model for the nut-and-bolt mechanism (proposed by Berg and Anderson in 1973). A nut being rotated will move along a bolt. Similarly, a phage wraps itself around a flagellum possessing helical grooves, and exploits the rotation of the flagellum in order to passively travel along and towards the cell body, according to this mechanism. The predictions from the model agree with experimental observations with respect to directionality, speed and the requirements for succesful translocation.
|
87 |
Etude et développement d'un capteur de microforce pour la caractérisation de la nanofriction multi-aspérités en micromanipulation dextre / Study and development of a microforce sensor for characterization of multi asperities nanofriction in dexterousBillot, Margot 06 June 2016 (has links)
L’objectif de cette thèse est le développement d’un nouveau capteur de forcemulti-axes destiné à mesurer les composantes de friction impliquées dans lecontact doigt/objet lors la micromanipulation dextre. Des études théoriques etdes simulations par éléments finis ont conduit à la conception de ce capteurMEMS piézorésistif composé d’une plate-forme centrale munie d’une microbille,entourée d’une table compliante. D’après les résultats de simulations, ce capteur estcapable de mesurer indépendamment les forces normales et de frottement (couplageréciproque inférieure à 1%) avec une bonne sensibilité. Différents runs de fabricationnous ont permis d’obtenir des dispositifs exploitables. La structure mécanique de cescapteurs a été validée par la mesure des fréquences de résonance qui sont en accordavec les résultats de simulation. Des premiers résultats expérimentaux en termesde mesure de force ont ensuite été obtenus grâce au développement d’un banc detest (structure robotique, actionneurs, caméras, etc.). Nous nous sommes égalementintéressés à la problématique de l’étalonnage des capteurs de micro et nanoforceà l’aide de ressorts magnétiques reliés à des masses mesurables. Nous avons, danscette optique, mis au point une stratégie d’estimation et de compensation passivedes perturbations mécaniques en utilisant un principe différentiel. Cette approchea été appliquée à un capteur de nanoforce basé sur la lévitation diamagnétique et aabouti à des résultats prometteurs : une résolution inférieure au nanonewton a puêtre obtenue. / Sensor enabling to characterize the finger/object contact involved in dexterousmicromanipulation. Theoretical studies and finite elements simulations have lead tothe conception of this piezoresistive MEMS sensor composed of a central platformwith a micro-ball and surrounded by a compliant table. According to the simulationresults, this sensor is able to independently measure the normal and friction forces(crosstalk less than 1 %) with a good sensitivity. Several runs of fabrication allowedus to obtain usable devices. The mechanical structure of such sensors has beenvalidated by the measurement of resonance frequencies that are consistent with thesimulation results. The first experimental results in terms of force measurement werethen obtained through the development of a test bench (robotic structure, actuators,cameras, etc.). We were also interested in the problem of calibration of micro andnanoforce sensors using magnetic springs connected to measurable masses. In thiscontext, we developed an estimation strategy and a passive rejection of mechanicaldisturbances using a differential principle. This approach was applied to a nanoforcesensor based on the diamagnetic levitation and yielded promising results: a resolutionlower the nanonewton level could be obtained.
|
Page generated in 0.0772 seconds