• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 30
  • 8
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 152
  • 113
  • 63
  • 58
  • 55
  • 47
  • 34
  • 26
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Scintilační detektor sekundárních elektronů pro VP SEM / Scintillation SE detector for VP SEM

Račanský, David January 2011 (has links)
First part of this thesis is a theoretical essay which deals with the basics of the variable pressure scanning electron microscope, includes detection of secondary electrons with a view to a scintillation detector. The first applied part of the thesis is focused on prediction, measuring and setting-up optional working parley in vacuum electrodes scintillation detector system, with a stress small diameter hole in screenings C1 and C2. Second applied part was verify a change of working distance between sample and detector in consequence to optional solution for another work.
142

Charakterizace struktur připravených selektivním mokrým leptáním křemíku / Characterization of structures fabricated by selective wet etching of silicon

Metelka, Ondřej January 2014 (has links)
The task of master’s thesis was to perform optimalization process for preparing metal etching mask by electron beam litography and subsequent selective wet ething of silicon with crystalographic orientation (100). Further characterization of etched surface and fabricated structures was performed. In particular, attention was given to the morphology demonstrated by scanning electron microscopy and study changes of the optical properties of gold plasmonic antennas due to their undercut.
143

Lokální optické a elektrické charakteristiky optoelektronických součástek / Local optical and electrical characteristics of optoelectronic devices

Škarvada, Pavel January 2012 (has links)
Solar energy conversion, miniaturization of semiconductor devices and associated lifetime, reliability and efficiency of devices are the basic premise of this work. This work is focused on the study of optoelectronic devices especially solar cells and its nondestructive diagnostic. Solar cells are advantageous for study mainly because the pn junction is located near the surface and contains a lot of inhomogeneities. It has been difficult until recently to investigate their local physical (electrical and optical) parameters due to the size of inhomogeneities. Behavior of inhomogeneities can be well understood with knowledge of its local properties. Establishment of measurement workplace, that satisfies requirements for measurement of local emission and optically induced current measurement, allows us detection and localization of inhomogeneities with spatial resolution more or less 100 nm. The core of thesis is characterization of imperfection using nondestructive techniques in the macroscopic region but primarily in microscopic region using scanning probe microscopy. Integral parts of the work are characterization techniques for photoelectrical devices, microscopic techniques and data processing. Scanning near-field optical microscope is used for the purpose of microscopic characterization such as topography, local optical, photoelectrical and electrooptical properties of structures in high spatial resolution. Locally induced current technique, current voltage characteristics, emission from reversed bias pn junction measurement including its thermal dependence are used for samples investigation in macroscopical region. It is possible to localize defects and structure inhomogeneity using mentioned techniques. Localised defects are consequently analyzed for composition and measured using electron microscopy. Specific outputs of work are classification of photoelectric devices defects and specification of nondestructive characterization techniques used for defect detection. Experimental characterization techniques are described together with defects measurement procedures. The key output is the catalog of serious defects which was detected. Particular defects of samples are shown including describe of its properties and physical meaning.
144

Nedestruktivní lokální diagnostika optoelektronických součástek / Non-Destructive Local Diagnostics of Optoelectronic Devices

Sobola, Dinara January 2015 (has links)
Chceme-li využít nové materiály pro nová optoelektronická zařízení, potřebujeme hlouběji nahlédnout do jejich struktury. K tomu, abychom toho dosáhli, je však nutný vývoj a aplikace přesnějších diagnostických metod. Předložená disertační práce, jako můj příspěvek k částečnému dosažení tohoto cíle, se zabývá metodami lokální diagnostiky povrchu optoelektronických zařízení a jejich materiálů, většinou za využití nedestruktivních mechanických, elektrických a optických technik. Tyto techniky umožňují jednak pochopit podstatu a jednak zlepšit celkovou účinnost a spolehlivost optoelektronických struktur, které jsou obecně degradovány přítomností malých defektů, na nichž dochází k absorpci světla, vnitřnímu odrazu a dalším ztrátovým mechanismům. Hlavní úsilí disertační práce je zaměřeno na studium degradačních jevů, které jsou nejčastěji způsobeny celkovým i lokálním ohřevem, což vede ke zvýšené difúze iontů a vakancí v daných materiálech. Z množství optoelektronických zařízení, jsem zvolila dva reprezentaty: a) křemíkové solární články – součástky s velkým pn přechodem a b) tenké vrstvy – substráty pro mikro optoelektronická zařízení. V obou případech jsem provedla jejich detailní povrchovou charakterizaci. U solárních článků jsem použila sondovou mikroskopii jako hlavní nástroj pro nedestruktivní charakterizaci povrchových vlastností. Tyto metody jsou v práci popsány, a jejich pozitivní i negativní aspekty jsou vysvětleny na základě rešerše literatury a našich vlastních experimentů. Je také uvedeno stanovisko k použití sondy mikroskopických aplikací pro studium solárních článků. V případě tenkých vrstev jsem zvolila dva, z hlediska stability, zajímavé materiály, které jsou vhodnými kandidáty pro přípravu heterostruktury: safír a karbid křemíku. Ze získaných dat a analýzy obrazu jsem našla korelaci mezi povrchovými parametry a podmínkami růstu heterostruktur studovaných pro optoelektronické aplikace. Práce zdůvodňuje používání těchto perspektivních materiálů pro zlepšení účinnosti, stability a spolehlivosti optoelektronických zařízení.
145

EINBLENDUNGEN. Teil 2: DINGE

Praetorius-Rhein, Johannes Praetorius-Rhein, Lea Wohl von Haselberg, Wohl von Haselberg, Lea 19 January 2021 (has links)
No description available.
146

Studium chování vybraných hornin při působení vysokých teplot / Study of the behavior of selected rocks at high temperatures

Holanec, Aleš January 2022 (has links)
The diploma thesis deals with the observation and diagnostics of transformations that take place in stone slabs of different mineralogical composition during heating to high temperatures. The theoretical part of the thesis deals with a summary of available information about selected types of rocks. Furthermore, it presents findings from the experimental thermal loading of a granite sample. The principles and instruments of laboratory experimental methods that are used to judge the resistance of rocks are described in detail. In the experimental part, the testing methodology is proposed, the procedure of production of rock test specimens is described and the way in which the thermal loading of stone slabs took place is explained. The results of the experiments are shown in the tables and graphs. A comparison of individual tests and properties of selected samples and evaluation of the obtained results is performed.
147

Vývoj povrchového reliéfu u lité niklové superslitiny In738LC po nízkocyklové únavě za pokojové teploty / Surface relief evolution in cast superalloy In738LC fatigued at room temperature

Samek, Petr January 2010 (has links)
Low cycle fatigue is an important valving parameter of materiale which are exposed random alternate strain during their operation. The alternate strain in that material is caused by temperature fluctuations during operation and outages such as aircraft engines. Tests of low cycle fatigue were performed on samples of superalloy Inconel 738LC at stable room temperature at 23°C. The actual experiment took place at certain intervals, consisting of cycling itself, and observing changes in surface relief by light and electron microscopy. There was observed significant surface relief at an early stage of low cycle fatigue. We compared results of measurement with other different observation methods.
148

Koherencí řízený holografický mikroskop / COHERENCE-CONTROLLED HOLOGRAPHIC MICROSCOPE

Kolman, Pavel January 2010 (has links)
ransmitted-light coherence-controlled holographic microscope (CCHM) based on an off-axis achromatic and space-invariant interferometer with a diffractive beamsplitter has been designed, constructed and tested. It is capable to image objects illuminated by light sources of arbitrary degree of temporal and spatial coherence. Off-axis image-plane hologram is recorded and the image complex amplitude (intensity and phase) is reconstructed numerically using fast Fourier transform algorithms. Phase image represents the optical path difference between the object and the reference arms caused by presence of an object. Therefore, it is a quantitative phase contrast image. Intensity image is confocal-like. Optical sectioning effect induced by an extended, spatial incoherent light source is equivalent to a conventional confocal image. CCHM is therefore capable to image objects under a diffusive layer or immersed in a turbid media. Spatial and temporal incoherence of illumination makes the optical sectioning effect stronger compared to a confocal imaging process. Object wave reconstruction from the only one recorded interference pattern ensures high resistance to vibrations and medium or ambience fluctuations. The frame rate is not limited by any component of the optical setup. Only the detector and computer speeds limit the frame rate. CCHM therefore allows observation of rapidly varying phenomena. CCHM makes the ex-post numerical refocusing possible within the coherence volume. Coherence degree of the light source in CCHM can be adapted to the object and to the required image properties. More coherent illumination provides wider range of numerical refocusing. On the other hand, a lower degree of coherence makes the optical sectioning stronger, i.e. the optical sections are thiner, it reduces coherence-noise and it makes it possible to separate the ballistic light. In addition to the ballistic light separation, CCHM enables us to separate the diffused light. Multi-colour-light
149

CAD/CAM Resin-Based Composites for Use in Long-Term Temporary Fixed Dental Prostheses

Hensel, Franziska 09 August 2022 (has links)
Ziel dieser In-vitro-Studie war es, die Leistungsfähigkeit von kunststoffbasierten CAD/CAM-Kompositen für die Herstellung von langzeitprovisorischem, festsitzendem Zahnersatz (FDP) zu analysieren und sie hinsichtlich ihrer Langzeitstabilität mit anderen handelsüblichen Alternativmaterialien zu vergleichen. Vier CAD/CAM-Materialien [Structur CAD (SC), VITA CAD-Temp (CT), Grandio disc (GD) und Lava Esthetic (LE)] und zwei direkte RBC's [(Structur 3 (S3) und LuxaCrown (LC)] wurden zur Herstellung von dreigliedrigen Brücken verwendet. 10/20 Brücken wurden einer Alterungssimulation mittels Thermocycling und mechanischer Belastung durch Kausimulation unterzogen und die anderen 10 Brücken wurden in destilliertem Wasser gelagert. Zwei Brücken von jedem Material wurden vor und nach der Kausimulation einer zusätzlichen Bilddiagnostik unterzogen. Die Bruchbelastung wurde gemessen und die Daten wurden statistisch ausgewertet.:Inhaltsverzeichnis 1. Einführung 1 1.1 Einleitung 1 1.2 Werkstoffe auf Kunststoffbasis für die subtraktive CAD/CAM-Technologie 3 1.3 Werkstoffbezogene Parameter 5 1.3.1 Zeitraffende Beanspruchung 6 1.3.2 Abrasion 7 1.3.3 Oberflächenrauheit 8 1.3.4 Mikrostruktur 9 1.3.5 Mechanische Belastbarkeit 10 1.4 Zielsetzung und Fragestellung der vorliegenden Studie 10 2. Publikationsmanuskript 12 3. Zusammenfassung der Arbeit 28 4. Literaturverzeichnis 32 5. Anlagen 38 5.1 Darstellung des eigenen Beitrags zur Publikationspromotion 38 5.2 Erklärung über die eigenständige Abfassung der Arbeit 39
150

Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses

Patommel, Jens 12 November 2010 (has links)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range. During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy. This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III.:1 Introduction ............................................... 1 2 Basic Properties of Hard X Rays ............................ 3 2.1 Free Propagation of X Rays ............................... 3 2.1.1 The Helmholtz Equation ................................. 4 2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6 2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8 2.1.4 Fresnel-Kirchhoff Propagation .......................... 11 2.2 Interaction of X Rays with Matter ........................ 13 2.2.1 Complex Index of Refraction ............................ 13 2.2.2 Attenuation ............................................ 15 2.2.3 Refraction ............................................. 18 3 The X-Ray Source ........................................... 21 3.1 Requirements ............................................. 21 3.1.1 Energy and Energy Bandwidth ............................ 21 3.1.2 Source Size and Divergence ............................. 23 3.1.3 Brilliance ............................................. 23 3.2 Synchrotron Radiation .................................... 24 3.3 Layout of a Synchrotron Radiation Facility ............... 27 3.4 Liénard-Wiechert Fields .................................. 29 3.5 Dipole Magnets ........................................... 31 3.6 Insertion Devices ........................................ 36 3.6.1 Multipole Wigglers ..................................... 36 3.6.2 Undulators ............................................. 37 4 X-Ray Optics ............................................... 39 4.1 Refractive X-Ray Lenses .................................. 40 4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41 4.3 Nanofocusing Lenses (NFLs) ............................... 43 4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45 4.5 Focal Distance ........................................... 46 4.6 Transverse Focus Size .................................... 50 4.7 Beam Caustic ............................................. 52 4.8 Depth of Focus ........................................... 53 4.9 Beam Divergence .......................................... 53 4.10 Chromaticity ............................................ 54 4.11 Transmission and Cross Section .......................... 55 4.12 Transverse Coherence .................................... 56 4.12.1 Mutual Intensity Function ............................. 57 4.12.2 Free Propagation of Mutual Intensity .................. 57 4.12.3 Mutual Intensity In The Focal Plane ................... 58 4.12.4 Diffraction Limited Focus ............................. 59 4.13 Coherent Flux ........................................... 60 4.14 Two-Stage Focusing ...................................... 64 4.14.1 The Prefocusing Parameter ............................. 65 4.14.2 Required Refractive Power ............................. 67 4.14.3 Flux Considerations ................................... 70 4.14.4 Astigmatic Prefocusing ................................ 75 5 Nanoprobe Setup ............................................ 77 5.1 X-Ray Optics ............................................. 78 5.1.1 Nanofocusing Lenses .................................... 79 5.1.2 Entry Slits ............................................ 82 5.1.3 Pinhole ................................................ 82 5.1.4 Additional Shielding ................................... 83 5.1.5 Vacuum and Helium Tubes ................................ 83 5.2 Sample Stages ............................................ 84 5.2.1 High Resolution Scanner ................................ 84 5.2.2 High Precision Rotational Stage ........................ 85 5.2.3 Coarse Linear Stages ................................... 85 5.2.4 Goniometer Head ........................................ 85 5.3 Detectors ................................................ 86 5.3.1 High Resolution X-Ray Camera ........................... 86 5.3.2 Diffraction Cameras .................................... 89 5.3.3 Energy Dispersive Detectors ............................ 91 5.3.4 Photodiodes ............................................ 93 5.4 Control Software ......................................... 94 6 Experiments ................................................ 97 6.1 Lens Alignment ........................................... 97 6.2 Focus Characterization ................................... 99 6.2.1 Knife-Edge Scans ....................................... 100 6.2.2 Far-Field Measurements ................................. 102 6.2.3 X-Ray Ptychography ..................................... 103 6.3 Fluorescence Spectroscopy ................................ 105 6.3.1 Fluorescence Element Mapping ........................... 107 6.3.2 Fluorescence Tomography ................................ 110 6.4 Diffraction Experiments .................................. 111 6.4.1 Microdiffraction on Phase Change Media ................. 112 6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113 6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115 6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117 7 Conclusion and Outlook ..................................... 121 Bibliography ................................................. 125 List of Figures .............................................. 139 List of Publications ......................................... 141 Danksagung ................................................... 145 Curriculum Vitae ............................................. 149 Erklärung .................................................... 151 / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern. Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen. Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.:1 Introduction ............................................... 1 2 Basic Properties of Hard X Rays ............................ 3 2.1 Free Propagation of X Rays ............................... 3 2.1.1 The Helmholtz Equation ................................. 4 2.1.2 Integral Theorem of Helmholtz and Kirchhoff ............ 6 2.1.3 Fresnel-Kirchhoff's Diffraction Formula ................ 8 2.1.4 Fresnel-Kirchhoff Propagation .......................... 11 2.2 Interaction of X Rays with Matter ........................ 13 2.2.1 Complex Index of Refraction ............................ 13 2.2.2 Attenuation ............................................ 15 2.2.3 Refraction ............................................. 18 3 The X-Ray Source ........................................... 21 3.1 Requirements ............................................. 21 3.1.1 Energy and Energy Bandwidth ............................ 21 3.1.2 Source Size and Divergence ............................. 23 3.1.3 Brilliance ............................................. 23 3.2 Synchrotron Radiation .................................... 24 3.3 Layout of a Synchrotron Radiation Facility ............... 27 3.4 Liénard-Wiechert Fields .................................. 29 3.5 Dipole Magnets ........................................... 31 3.6 Insertion Devices ........................................ 36 3.6.1 Multipole Wigglers ..................................... 36 3.6.2 Undulators ............................................. 37 4 X-Ray Optics ............................................... 39 4.1 Refractive X-Ray Lenses .................................. 40 4.2 Compound Parabolic Refractive Lenses (CRLs) .............. 41 4.3 Nanofocusing Lenses (NFLs) ............................... 43 4.4 Adiabatically Focusing Lenses (AFLs) ..................... 45 4.5 Focal Distance ........................................... 46 4.6 Transverse Focus Size .................................... 50 4.7 Beam Caustic ............................................. 52 4.8 Depth of Focus ........................................... 53 4.9 Beam Divergence .......................................... 53 4.10 Chromaticity ............................................ 54 4.11 Transmission and Cross Section .......................... 55 4.12 Transverse Coherence .................................... 56 4.12.1 Mutual Intensity Function ............................. 57 4.12.2 Free Propagation of Mutual Intensity .................. 57 4.12.3 Mutual Intensity In The Focal Plane ................... 58 4.12.4 Diffraction Limited Focus ............................. 59 4.13 Coherent Flux ........................................... 60 4.14 Two-Stage Focusing ...................................... 64 4.14.1 The Prefocusing Parameter ............................. 65 4.14.2 Required Refractive Power ............................. 67 4.14.3 Flux Considerations ................................... 70 4.14.4 Astigmatic Prefocusing ................................ 75 5 Nanoprobe Setup ............................................ 77 5.1 X-Ray Optics ............................................. 78 5.1.1 Nanofocusing Lenses .................................... 79 5.1.2 Entry Slits ............................................ 82 5.1.3 Pinhole ................................................ 82 5.1.4 Additional Shielding ................................... 83 5.1.5 Vacuum and Helium Tubes ................................ 83 5.2 Sample Stages ............................................ 84 5.2.1 High Resolution Scanner ................................ 84 5.2.2 High Precision Rotational Stage ........................ 85 5.2.3 Coarse Linear Stages ................................... 85 5.2.4 Goniometer Head ........................................ 85 5.3 Detectors ................................................ 86 5.3.1 High Resolution X-Ray Camera ........................... 86 5.3.2 Diffraction Cameras .................................... 89 5.3.3 Energy Dispersive Detectors ............................ 91 5.3.4 Photodiodes ............................................ 93 5.4 Control Software ......................................... 94 6 Experiments ................................................ 97 6.1 Lens Alignment ........................................... 97 6.2 Focus Characterization ................................... 99 6.2.1 Knife-Edge Scans ....................................... 100 6.2.2 Far-Field Measurements ................................. 102 6.2.3 X-Ray Ptychography ..................................... 103 6.3 Fluorescence Spectroscopy ................................ 105 6.3.1 Fluorescence Element Mapping ........................... 107 6.3.2 Fluorescence Tomography ................................ 110 6.4 Diffraction Experiments .................................. 111 6.4.1 Microdiffraction on Phase Change Media ................. 112 6.4.2 Microdiffraction on Stranski-Krastanow Islands ......... 113 6.4.3 Coherent X-Ray Diffraction Imaging of Gold Particles ... 115 6.4.4 X-Ray Ptychography of a Nano-Structured Microchip ...... 117 7 Conclusion and Outlook ..................................... 121 Bibliography ................................................. 125 List of Figures .............................................. 139 List of Publications ......................................... 141 Danksagung ................................................... 145 Curriculum Vitae ............................................. 149 Erklärung .................................................... 151

Page generated in 0.0532 seconds