• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Valuation, hedging and the risk management of insurance contracts

Barbarin, Jérôme 03 June 2008 (has links)
This thesis aims at contributing to the study of the valuation of insurance liabilities and the management of the assets backing these liabilities. It consists of four parts, each devoted to a specific topic. In the first part, we study the pricing of a classical single premium life insurance contract with profit, in terms of a guaranteed rate on the premium and a participation rate on the (terminal) financial surplus. We argue that, given the asset allocation of the insurer, these technical parameters should be determined by taking explicitly into account the risk management policy of the insurance company, in terms of a risk measure such as the value-at-risk or the conditional value-at-risk. We then design a methodology that allows us to fix both parameters in such a way that the contract is fairly priced and simultaneously exhibits a risk consistent with the risk management policy. In the second part, we focus on the management of the surrender option embedded in most life insurance contracts. In Chapter 2, we argue that we should model the surrender time as a random time not adapted to the filtration generated by the financial assets prices, instead of assuming that the surrender time is an optimal stopping time as it is usual in the actuarial literature. We then study the valuation of insurance contracts with a surrender option in such a model. We here follow the financial literature on the default risk and in particular, the reduced-form models. In Chapter 3 and 4, we study the hedging strategies of such insurance contracts. In Chapter 3, we study their risk-minimizing strategies and in Chapter 4, we focus on their ``locally risk-minimizing' strategies. As a by-product, we study the impact of a progressive enlargement of filtration on the so-called ``minimal martingale measure'. The third part is devoted to the systematic mortality risk. Due to its systematic nature, this risk cannot be diversified through increasing the size of the portfolio. It is thus also important to study the hedging strategies an insurer should follow to mitigate its exposure to this risk. In Chapter 5, we study the risk-minimizing strategies for a life insurance contract when no mortality-linked financial assets are traded on the financial market. We here extend Dahl and Moller’s results and show that the risk-minimizing strategy of a life insurance contract is given by a weighted average of risk-minimizing strategies of purely financial claims, where the weights are given by the (stochastic) survival probabilities. In Chapter 6, we first study the application of the HJM methodology to the modelling of a longevity bonds market and describe a coherent theoretical setting in which we can properly define the longevity bond prices. Then, we study the risk-minimizing strategies for pure endowments and annuities portfolios when these longevity bonds are traded. Finally, the fourth part deals with the design of ALM strategies for a non-life insurance portfolio. In particular, this chapter aims at studying the risk-minimizing strategies for a non life insurance company when inflation risk and interest rate risk are taken into account. We derive the general form of these strategies when the cumulative payments of the insurer are described by an arbitrary increasing process adapted to the natural filtration of a general marked point process and when the inflation and the term structure of interest rates are simultaneously described by the HJM model of Jarrow and Yildirim. We then systematically apply this result to four specific models of insurance claims. We first study two ``collective' models. We then study two ``individual' models where the claims are notified at a random time and settled through time.
2

Utility maximisation and utility indifference pricing for exponential semimartingale models / Maximisation de l’utilité et prix de l’indifférence pour des modéles semimartingales exponentiels

Ellanskaya, Anastasia 09 January 2015 (has links)
Dans cette thèse nous considérons le problème de la maximisation d’utilité et de la formation des prix d’indifférence pour les modèles semimartingales exponentiels dépendant d’un facteur aléatoire ξ. L’enjeu est de résoudre le problème des prix d’indifférence en utilisant le grossissement de l’espace et de la filtration. Nous réduisons le problème de maximisation dans la filtration élargie au problème conditionnel, sachant {ξ = v}, que nous résolvons en utilisant une approche duale. Pour HARA-utilités nous introduisons les informations telles que les entropies relatives et les intégrales de type Hellinger, ainsi que les processus d’information correspondants, enfin d’exprimer, via ces processus, l’utilité maximal. En particulier, nous étudions les modèles de Lévy exponentiels, où les processus d’information sont déterministes ce que simplifie considèrablement les calculs des prix d’indiffrence. Enfin, nous appliquons les rèsultats au modèle du mouvement brownien géométrique et au modèle de diffusion-sauts qui inclut le mouvement brownien et les processus de Poisson. Dans les cas d’utilité logarithmique, de puissance et exponentielle, nous fournissons les formules explicites des informations, et puis, en utilisant les méthodes numériques, nous résolvons les équations pour obtenir les prix d’indifférence en cas de vente d’une option européenne. / This thesis explores the utility maximisation problem and indifference pricing for exponential semimartingale models depending on a random factor ξ. The main idea to solve indifference pricing problem consists in the enlargement of the space and filtration. We reduce the maximization problem on the enlarged filtration to the conditional one, given {ξ = v}, which we solve using dual approach. For HARA-utilities we introduce the information quantities such that the relative entropies, Hellinger type integrals, and the corresponding information processes, and we express the maximal utility via these processes. As a particular case, we study exponential Levy models, where the information processes are deterministic and this fact simplify very much indifference price calculus. Finally, we apply the results to Geometric Brownian motion model and jump-diffusion model which incorporates Brownian motion and Poisson process. In the cases of logarithmic, power and exponential utilities, we provide the explicit formulae of information quantities and using the numerical methods we solve the equations for the seller’s and buyer’s indifference prices of European put option.

Page generated in 0.0776 seconds